Transverse linear instability of solitary waves for coupled long-wave-short-wave interaction equations

نویسندگان

  • H. A. Erbay
  • S. Erbay
چکیده

In this paper, we investigate the transverse linear instability of one-dimensional solitary wave solutions of the coupled system of two-dimensional long-wave-short-wave interaction equations. We show that the one-dimensional solitary waves are linearly unstable to perturbations in the transverse direction if the coefficient of the term associated with transverse effects is negative. This transverse instability condition coincides with the non-existence condition identified in the literature for two-dimensional localized solitary wave solutions of the coupled system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexition and solitary wave solutions of the (2+1)-dimensional dispersive long wave equations

In this paper, the coupled dispersive (2+1)-dimensional long wave equation is studied. The traveling wave hypothesis yields complexiton solutions. Subsequently, the wave equation is studied with power law nonlinearity where the ansatz method is applied to yield solitary wave solutions. The constraint conditions for the existence of solitons naturally fall out of the derivation of the soliton so...

متن کامل

SOLITARY WAVES AND THEIR LINEAR STABILITY IN WEAKLY COUPLED KdV EQUATIONS

We consider a system of weakly coupled KdV equations developed initially by Gear & Grimshaw to model interactions between long waves. We prove the existence of a variey of solitary wave solutions, some of which are not constrained minimizers. We show that such solutions are always linearly unstable. Moreover, the nature of the instability may be oscillatory and as such provides a rigorous justi...

متن کامل

A Study of Bit Condition for Generation Rx -Mode Waves: Interaction of Particles with Z/UH-Mode Waves

Interactions of charge particles with electromagnetic waves have important effects (linear and nonlinear) on the propagation of electromagnetic waves, and it can somewhat play a role in generation of the new mode waves. Besides, the particle energies can play an important role in causing instability in plasma. The values of parallel energy of the particles have been calculated so that they can ...

متن کامل

Dynamics of Three-Dimensional Gravity-Capillary Solitary Waves in Deep Water

A model equation for gravity-capillary waves in deep water is proposed. This model is a quadratic approximation of the deep water potential flow equations and has wavepacket-type solitary wave solutions. The model equation supports line solitary waves which are spatially localized in the direction of propagation and constant in the transverse direction, and lump solitary waves which are spatial...

متن کامل

Spectral Stability of Stationary Solutions of a Boussinesq System Describing Long Waves in Dispersive Media

We study the spectral (in)stability of one-dimensional solitary and cnoidal waves of various Boussinesq systems. These systems model three-dimensional water waves (i.e., the surface is two-dimensional) with or without surface tension. We present the results of numerous computations examining the spectra related to the linear stability problem for both stationary solitary and cnoidal waves with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2012