Permuted Product and Importance-Sampling Estimators for Regenerative Simulations

نویسندگان

  • James M. Calvin
  • Marvin K. Nakayama
چکیده

In a previous paper we introduced a new variance-reduction technique for regenerative simulations based on permuting regeneration cycles. In this paper we apply this idea to new classes of estimators. In particular, we derive permuted versions of likelihood-ratio derivative estimators for steady-state performance measures, importance-sampling estimators of the mean cumulative reward until hitting a set of states, and Tin estimators for steady-state ratio formulas. Empirical results are presented that show signiicant variance reductions in some cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permuted Estimators for Regenerative Simulations

In a previous paper we introduced a new variance-reduction technique for regenerative simulations based on permuting regeneration cycles. In this paper we apply this idea to large classes of other estimators. In particular, we derive permuted versions of likelihood-ratio derivative estimators for steady-state performance measures, importance-sampling estima-tors of the mean cumulative reward un...

متن کامل

Central Limit Theorems for Permuted Regenerative Estimators

We prove strong laws of large numbers and central limit theorems for some permuted estimators from regenerative simulations. These limit theorems provide the basis for constructing asymptotically valid confidence intervals for the permuted estimators.

متن کامل

A Comparison of Output-analysis Methods for Simulations of Processes with Multiple Regeneration Sequences

We compare several simulation estimators for a performance measure of a process having multiple regeneration sequences. We examine the setting of two regeneration sequences. We compare two existing estimators, the permuted estimator and the semi-regenerative estimator, and two new estimators, a type of U -statistic estimator and a type of V -statistic estimator. The last two estimators are obta...

متن کامل

Estimating standard errors for importance sampling estimators with multiple Markov chains

The naive importance sampling estimator based on the samples from a single importance density can be extremely numerically unstable. We consider multiple distributions importance sampling estimators where samples from more than one probability distributions are combined to consistently estimate means with respect to given target distributions. These generalized importance sampling estimators pr...

متن کامل

Importance Sampling Using the Semi - Regenerative Method

We discuss using the semi-regenerative method, importance sampling, and stratification to estimate the expected cumulative reward until hitting a fixed set of states for a discrete-time Markov chain on a countable state space. We develop a general theory for this problem and present several central limit theorems for our estimators. We also present some empirical results from applying these tec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998