Identification and characterization of xpac protein, the gene product of the human XPAC (xeroderma pigmentosum group A complementing) gene.
نویسندگان
چکیده
We have cloned human xeroderma pigmentosum group A complementing (XPAC) cDNA that encodes a "zinc finger" protein with a predicted size of 31 kDa. To detect the xpac protein in cells, we raised antibody against a recombinant human xpac protein. Using this antibody, we identified the xpac protein in the nucleus of cells. In normal human cells, 40- and 38-kDa proteins were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A reduced amount of the smaller protein was detected in XP 39OSSV cells, which show low UV sensitivity, and no xpac proteins were detected in XP 2OSSV cells, which show high UV sensitivity. These levels of xpac proteins in xeroderma pigmentosum cells were determinants of heterogeneity of the DNA repair defect in group A xeroderma pigmentosum. Synthesis of the xpac protein did not increase after UV irradiation.
منابع مشابه
Cloning and characterization of the mouse XPAC gene
Xeroderma Pigmentosum is a human disease, which is, among others, characterized by a high incidence of (sunlight induced) skin cancer, due to a defect in nucleotide excision repair (NER). The human DNA repair gene XPAC corrects this defect in cells isolated from Xeroderma Pigmentosum complementation group A (XP-A) patients. To enable the development of a transgenic mouse model for XP-A by gene ...
متن کاملMutational analysis of the structure and function of the xeroderma pigmentosum group A complementing protein. Identification of essential domains for nuclear localization and DNA excision repair.
We showed previously that the xeroderma pigmentosum group A complementing (XPAC) protein involved in the DNA excision repair pathway contains a zinc-finger motif and is localized in the nucleus of normal human cells. For detailed structural and functional analyses of the XPAC protein, we constructed various XPAC cDNAs by site-directed mutagenesis and isolated permanent cell lines expressing mut...
متن کاملCharacterization of a splicing mutation in group A xeroderma pigmentosum.
The molecular basis of group A xeroderma pigmentosum (XP) was investigated by comparison of the nucleotide sequences of multiple clones of the XP group A complementing gene (XPAC) from a patient with group A XP with that of a normal gene. The clones showed a G----C substitution at the 3' splice acceptor site of intron 3, which altered the obligatory AG acceptor dinucleotide to AC. Nucleotide se...
متن کاملRAD25 (SSL2), the yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability.
Xeroderma pigmentosum (XP) patients are extremely sensitive to ultraviolet (UV) light and suffer from a high incidence of skin cancers, due to a defect in nucleotide excision repair. The disease is genetically heterogeneous, and seven complementation groups, A-G, have been identified. Homologs of human excision repair genes ERCC1, XPDC/ERCC2, and XPAC have been identified in the yeast Saccharom...
متن کاملAllele and Genotype Distributions of DNA Repair Gene Polymorphisms in South Indian Healthy Population
Various DNA repair pathways protect the structural and chemical integrity of the human genome from environmental and endogenous threats. Polymorphisms of genes encoding the proteins involved in DNA repair have been found to be associated with cancer risk and chemotherapeutic response. In this study, we aim to establish the normative frequencies of DNA repair genes in South Indian healthy popula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 266 29 شماره
صفحات -
تاریخ انتشار 1991