A wideband fast multipole method for the Helmholtz equation in three dimensions

نویسندگان

  • Hongwei Cheng
  • William Y. Crutchfield
  • Zydrunas Gimbutas
  • Leslie Greengard
  • J. Frank Ethridge
  • Jingfang Huang
  • Vladimir Rokhlin
  • Norman Yarvin
  • Junsheng Zhao
چکیده

We describe a wideband version of the Fast Multipole Method for the Helmholtz equation in three dimensions. It unifies previously existing versions of the FMM for high and low frequencies into an algorithm which is accurate and efficient for any frequency, having a CPU time of O(N) if low-frequency computations dominate, or O(N logN) if high-frequency computations dominate. The performance of the algorithm is illustrated with numerical examples. 2005 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on the implementation of the wideband FMM for the Helmholtz equation in two dimensions

This paper describes a simple version of the Fast Multipole Method (FMM) for the Helmholtz equation in two dimensions. We discuss both the underlying theory and some of the practical aspects of its implementation to allow for stability and high accuracy at all wavelengths.

متن کامل

Revision of wFMM - A Wideband Fast Multipole Method for the two-dimensional complex Helmholtz equation

Article history: Received 8 March 2010 Received in revised form 1 September 2010 Accepted 15 September 2010

متن کامل

Stability of the Fast Multipole Method for Helmholtz Equation in Three Dimensions

Stability limits for the diagonal forms approximating the free space Green’s function in Helmholtz’ equation are derived. It is shown that while the original approximation of the Green’s function is stable except for overflows, the diagonalized form becomes unstable due to errors from roundoff, interpolation, choice of quadrature rule and approximation of the translation operator. Numerical exp...

متن کامل

An Implementation of Low-Frequency Fast Multipole BIEM for Helmholtz’ Equation on GPU

Acceleration of the fast multipole method (FMM), which is the fast and approximate algorithm to compute the pairwise interactions among many bodies, with graphics processing units (GPUs) has been investigated for the last couple of years. In view of the type of kernel functions, the non-oscillatory kernels (especially, the Laplace kernel) were studied by many researchers (e.g. Gumerov), and the...

متن کامل

A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation.

The development of a fast multipole method (FMM) accelerated iterative solution of the boundary element method (BEM) for the Helmholtz equations in three dimensions is described. The FMM for the Helmholtz equation is significantly different for problems with low and high kD (where k is the wavenumber and D the domain size), and for large problems the method must be switched between levels of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 216  شماره 

صفحات  -

تاریخ انتشار 2006