Quasi-cyclic codes over Z4 and some new binary codes
نویسندگان
چکیده
Recently, (linear) codes over and quasi-cyclic (QC) codes (over fields) have been shown to yield useful results in coding theory. Combining these two ideas we study -QC codes and obtain new binary codes using the usual Gray map. Among the new codes, the lift of the famous Golay code to produces a new binary code, a (92 2 28)-code, which is the best among all binary codes (linear or nonlinear). Moreover, we characterize cyclic codes corresponding to free modules in terms of their generator polynomials.
منابع مشابه
Some Good Cyclic and Quasi-Twisted Z4-Linear Codes
For over a decade, there has been considerable research on codes over Z4 and other rings. In spite of this, no tables or databases exist for codes over Z4, as is the case with codes over finite fields. The purpose of this work is to contribute to the creation of such a database. We consider cyclic, negacyclic and quasi-twisted (QT) codes over Z4. Some of these codes have binary images with bett...
متن کاملCyclic Codes and Self-Dual Codes Over
We introduce linear cyclic codes over the ring F 2 + uF 2 = f0; 1; u; u = u + 1g, where u = 0 and study them by analogy with the Z4 case. We give the structure of these codes on this new alphabet. Self-dual codes of odd length exist as in the case of Z4-codes. Unlike the Z4 case, here free codes are not interesting. Some nonfree codes give rise to optimal binary linear codes and extremal self-d...
متن کاملNew Ring-Linear Codes from Geometric Dualization
In the 1960s and 1970s the Nordstrom-Robinson-Code [30] and subsequently the infinite series of the Preparata[31], Kerdock[21], Delsarte-Goethals[6] and Goethals-Codes [7] were discovered. Apart from a few corner cases, all of these codes are non-linear binary block codes that have higher minimum distance than any known comparable (having equal size and length) linear binary code. We will call ...
متن کاملSearch for Good Linear Codes in the Class of Quasi-Cyclic and Related Codes
This chapter gives an introduction to algebraic coding theory and a survey of constructions of some of the well known classes of algebraic block codes such as cyclic codes, BCH codes, Reed-Solomon codes, Hamming codes, quadratic residue codes, and quasi-cyclic (QC) codes. It then describes some recent generalizations of QC codes and open problems related to them. Also discussed in this chapter ...
متن کاملCyclic codes over $\mathbb{Z}_4[u]/\langle u^k\rangle$ of odd length
Let R = Z4[u]/〈u〉 = Z4 + uZ4 + . . . + uZ4 (u = 0) where k ∈ Z satisfies k ≥ 2. For any odd positive integer n, it is known that cyclic codes over R of length n are identified with ideals of the ring R[x]/〈x − 1〉. In this paper, an explicit representation for each cyclic code over R of length n is provided and a formula to count the number of codewords in each code is given. Then a formula to c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 48 شماره
صفحات -
تاریخ انتشار 2002