On Uncertain Probabilistic Data Modeling

نویسندگان

  • Teng Lv
  • Ping Yan
  • Weimin He
چکیده

Uncertainty in data is caused by various reasons including data itself, data mapping, and data policy. For data itself, data are uncertain because of various reasons. For example, data from a sensor network, Internet of Things or Radio Frequency Identification is often inaccurate and uncertain because of devices or environmental factors. For data mapping, integrated data from various heterogonous data sources is commonly uncertain because of uncertain data mapping, data inconsistency, missing data, and dirty data. For data policy, data is modified or hided for policies of data privacy and data confidentiality in an organization. But traditional deterministic data management mainly deals with deterministic data which is precise and certain, and cannot process uncertain data. Modeling uncertain data is a foundation of other technologies for further processing data, such as indexing, querying, searching, mapping, integrating, and mining data, etc. Probabilistic data models of relational databases, XML data and graph data are widely used in many applications and areas today, such as World Wide Web, semantic web, sensor networks, Internet of Things, mobile ad-hoc networks, social networks, traffic networks, biological networks, genome databases, and medical records, etc. This paper presents a survey study of different probabilistic models of uncertain data in relational databases, XML data, and graph data, respectively. The advantages and disadvantages of each kind of probabilistic modes are analyzed and compared. Further open topics of modeling uncertain probabilistic data such as semantic and computation aspects are discussed in the paper. Criteria for modeling uncertain data, such as expressive power, complexity, efficiency, extension are also proposed in the paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rule-based joint fuzzy and probabilistic networks

One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...

متن کامل

Probabilistic GENCOs Bidding Strategy in Restructured Two-Side Auction Power Markets

As a matter of course, power market uncertainties escalation is by product of power industry restructure on one hand and the unrivalled penetration of renewable energies on the other. Generally, the decision making process in such an uncertain environment faces with different risks. In addition, the performance of real power markets is very close to oligopoly markets, in which, some market play...

متن کامل

Probabilistic Allocation Of Parking lots In Distribution Network Considering Uncertainty.

In this paper, parking lots with bidirectional power flow capability, is used as an achievements of smart power systems. Based on operating conditions, electric vehicles can be considered  as a load  or generator. For optimal operation of power systems, allocation of these novel units is also necessary same as other distributed generation. In this paper, an optimization problem is  proposed for...

متن کامل

Inversion of probabilistic models of structures using mea- sured transfer functions

Predictive models for the dynamical behavior of complex structures are inevitably confronted to data uncertainties and modeling errors. Uncertain data include material properties, geometric parameters and boundary conditions. Modeling errors are introduced by the assumptions and approximations made in the modeling process. The data uncertainties and modeling errors may sometimes result in signi...

متن کامل

Probabilistic Skylines on Uncertain Data

Uncertain data are inherent in some important applications. Although a considerable amount of research has been dedicated to modeling uncertain data and answering some types of queries on uncertain data, how to conduct advanced analysis on uncertain data remains an open problem at large. In this paper, we tackle the problem of skyline analysis on uncertain data. We propose a novel probabilistic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017