Invariant Sets in Sliding Mode Control Theory with Application to Servo Actuator System with Friction
نویسنده
چکیده
The mismatched perturbations and system chattering are the two main challenging problems in sliding mode control. This paper tries to solve these problems by deriving the invariant sets created by the sliding mode controller where the present work is devoted to a second order nonlinear affine system. If the state started in these sets it will not leave it for all future time. The first invariant set is found function to the initial condition only. Accordingly, the state bound is estimated and used when determining the gain of the sliding mode controller. This step overcomes an arithmetic difficulty that consists of calculating suitable controller gain value that ensures the attractiveness of the switching manifold with lower chattering behavior. Moreover to eliminate system chattering and to attenuate the effects of the mismatched perturbations, the signum function is replaced by an approximate form which yields a differentiable sliding mode controller. Therefore, the state will converge to a second positively invariant set rather than the origin. The size of this set, as derived here, is function to the parameters that can be chosen by the designer. This result enables us to control the size of the steady state error which means also that the effect of mismatched perturbation is attenuated. The sliding mode controller is then applied to the servo actuator system with friction based on the derived invariant sets. The friction model is represented by the major friction components; Coulomb friction, the Stiction friction, and the viscous friction. The simulation results demonstrate the rightness of the derived sets and the ability of the differentiable sliding mode controller to attenuate the friction effect and regulate the state to the positively invariant set with a prescribed steady state error. Key-Words: -Positively Invariant Set, Sliding Mode Control, Servo Actuator, Friction Model.
منابع مشابه
Design Servo System Type and Positioning of Pole Observer Full Rank a Piezoelectric Servo Valve without Integrator
In this paper, the method of modern control approach for the design of controller and observer is used. Other functions such as neural controllers - or fuzzy sliding mode control can be found in this work and the results are compared. First, a dynamic model of the servo valve is intended for the governing equations in state-space form expression are obtained. Due to the system integrator is exp...
متن کاملStraightness Error Compensation Servo-system for Single-axis Linear Motor Stage
Since straightness error of linear motor stage is hardly dependent upon machining accuracy and assembling accuracy, there is limit on maximum realizable accuracy. To cope with this limitation, this paper proposed a servo system to compensate straightness error of a linear motor stage. The servo system is mounted on the slider of the linear motor stage and moves in the direction of the straightn...
متن کاملDevelopment of X-Y Servo Pneumatic-Piezoelectric Hybrid Actuators for Position Control with High Response, Large Stroke and Nanometer Accuracy
This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis...
متن کاملOptimal Integral Sliding Mode Controller of a UAV With Considering Actuator Fault
In this paper, using the State Dependent Riccati Equation (SDRE) method, we propose a Robust Optimal Integral Sliding Mode Controller (ROISMC) to guarantee an optimal control law for a quadrotor which has become increasingly important by virtue of its high degrees of manoeuvres ability in presence of unknown time-varying external disturbances and actuator fault. The robustness of the controller...
متن کاملSliding Mode Control with PID Sliding Surface of an Electro-hydraulic Servo System for Position Tracking Control
This paper presents the position tracking performance of an electro-hydraulic hydraulic servo (EHS) system using sliding mode control (SMC) with proportional-integral-derivative (PID) sliding surface. In modelling process, a mathematical model of the EHS system is developed by considering its nonlinearities as represented by a Lu-Gre friction model. The control strategy is derived from the deve...
متن کامل