PCA-based feature extraction for fluctuation in speaking style of articulation disorders
نویسندگان
چکیده
We investigated the speech recognition of a person with articulation disorders resulting from athetoid cerebral palsy. Recently, the accuracy of speaker-independent speech recognition has been remarkably improved by the use of stochastic modeling of speech. However, the use of those acoustic models causes degradation of speech recognition for a person with different speech styles (e.g., articulation disorders). In this paper, we discuss our efforts to build an acoustic model for a person with articulation disorders. The articulation of the first speech tends to become unstable due to strain on muscles and that causes degradation of speech recognition. Therefore, we propose a robust feature extraction method based on PCA (Principal Component Analysis) instead of MFCC. Its effectiveness is confirmed by word recognition experiments.
منابع مشابه
Robust Feature Extraction to Utterance Fluctuation of Articulation Disorders Based on Random Projection
We investigated the speech recognition of a person with an articulation disorder resulting from the athetoid type of cerebral palsy. The articulation of the first speech tends to become unstable due to strain on speech-related muscles, and that causes degradation of speech recognition. In this paper, we introduce a robust feature extraction method based on PCA (Principal Component Analysis) and...
متن کاملIntegration of Metamodel and Acoustic Model for Dysarthric Speech Recognition
We investigated the speech recognition of a person with articulation disorders resulting from athetoid cerebral palsy. The articulation of the first words spoken tends to be unstable due to the strain placed on the speech-related muscles, and this causes degradation of speech recognition. Therefore, we proposed a robust feature extraction method based on PCA (Principal Component Analysis) inste...
متن کاملConvolutive Bottleneck Network with Dropout for Dysarthric Speech Recognition
In this paper, we investigate the recognition of speech produced by a person with an articulation disorder resulting from athetoid cerebral palsy. The articulation of the first spoken words tends to become unstable due to strain on speech muscles, and that causes degradation of speech recognition. Therefore, we propose a robust feature extraction method using a convolutive bottleneck network (C...
متن کاملComparative Effectiveness of Semantic Feature Analysis (SFA) and Phonological Components Analysis (PCA) for Anomia Treatment in Persian Speaking Patients With Aphasia
Objectives: Anomia is one of the most common and persistent symptoms of aphasia. Although treatments of anomia usually focus on semantic and/or phonological levels, which both have been demonstrated to be effective, the relationship between the underlying functional deficit in naming and response to a particular treatment approach remains unclear. The aim of this study was to determine the rela...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کامل