The purification and some equilibrium properties of the nitrite reductase of the bacterium Wolinella succinogenes.

نویسندگان

  • R Blackmore
  • A M Roberton
  • T Brittain
چکیده

The bacterium Wolinella succinogenes produces a nitrite reductase enzyme that can be purified to homogeneity in high yield by a combination of detergent extraction, hydroxyapatite chromatography and Mr fractionation. Nitrite reductase activity is found to be present in both a high- and a low-Mr fraction. The high-Mr fraction has been shown to consist of the low-Mr nitrite reductase enzyme associated with a hydrophobic 'binding protein'. The amino acid composition for both proteins is reported. The nitrite reductase enzyme shows spectral characteristics indicative of the presence of c-type haem groups. Measurements at 610 nm indicate the presence of some high-spin haem groups at neutral pH. This haem subgroup undergoes a pH-linked high-spin - low-spin transition at alkaline pH. Approximately two of the six haem groups present within the enzyme bind CO with low affinity (KD = 0.4 mM). The enzyme also shows a range of redox activities with various inorganic reagents. The enzyme has been shown to exhibit dithionite reductase, oxygen reductase and CO2 reductase activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two structurally and kinetically distinct forms of Wolinella succinogenes nitrite reductase.

It is shown that the oxidized form of the hexa-haem nitrite reductase of Wolinella succinogenes exists in two structurally and functionally distinct forms, termed 'resting' and 'redox-cycled'. The nitrite reductase as initially isolated, termed 'resting', has five low-spin ferrihaem groups and one high-spin ferrihaem group. The reduction of these haem groups by Na2S2O4 occurs in two kinetically...

متن کامل

Storage, transport, release: heme versatility in nitrite reductase electron transfer studied by molecular dynamics simulations.

Using molecular dynamics simulations of the thermodynamic integration type, we study the energetics and kinetics of electron transfer through the nitrite reductase enzyme of Sulfurospirillum deleyianum, Wolinella succinogenes and Campylobacter jejuni. In all of these five-heme proteins, the storage of an even number of electrons within a monomeric chain is thermodynamically favoured. Kineticall...

متن کامل

Variants of the tetrahaem cytochrome c quinol dehydrogenase NrfH characterize the menaquinol-binding site, the haem c-binding motifs and the transmembrane segment.

Members of the NapC/NrfH family are multihaem c-type cytochromes that exchange electrons with oxidoreductases situated at the outside of the cytoplasmic membrane or in the periplasmic space of many proteobacteria. They form a group of membrane-bound quinol dehydrogenases that are essential components of several electron transport chains, for example those of periplasmic nitrate respiration and ...

متن کامل

Respiratory nitrogen metabolism and nitrosative stress defence in ϵ-proteobacteria: the role of NssR-type transcription regulators.

ϵ-Proteobacteria form a globally ubiquitous group of ecologically significant organisms and comprise a diverse range of host-associated and free-living species. To grow by anaerobic respiration, many ϵ-proteobacteria reduce nitrate to nitrite followed by either nitrite ammonification or denitrification. Using the ammonifying model organisms Wolinella succinogenes and Campylobacter jejuni, the e...

متن کامل

Heterologous production in Wolinella succinogenes and characterization of the quinol:fumarate reductase enzymes from Helicobacter pylori and Campylobacter jejuni.

The epsilon-proteobacteria Helicobacter pylori and Campylobacter jejuni are both human pathogens. They colonize mucosal surfaces causing severe diseases. The membrane protein complex QFR (quinol:fumarate reductase) from H. pylori has previously been established as a potential drug target, and the same is likely for the QFR from C. jejuni. In the present paper, we describe the cloning of the QFR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 233 2  شماره 

صفحات  -

تاریخ انتشار 1986