Simple adaptive air-fuel ratio control of a port injection SI engine with a cylinder pressure sensor
نویسندگان
چکیده
The problem of air-fuel ratio (AFR) control of the port injection spark ignition (SI) engine is still of considerable importance because of stringent demands on emission control. In this paper, the static AFR calculation model based on in-cylinder pressure data and on the adaptive AFR control strategy is presented. The model utilises the intake manifold pressure, engine speed, total heat release, and the rapid burn angle, as input variables for the AFR computation. The combustion parameters, total heat release, and rapid burn angle, are calculated from in-cylinder pressure data. This proposed AFR model can be applied to the virtual lambda sensor for the feedback control system. In practical applications, simple adaptive control (SAC) is applied in conjunction with the AFR model for port-injected fuel control. The experimental results show that the proposed model can estimate the AFR, and the accuracy of the estimated value is applicable to the feedback control system. Additionally, the adaptive controller with the AFR model can be applied to regulate the AFR of the port injection SI engine.
منابع مشابه
The Effect of Injection Timing and Phasing on the Emission of a Gasoline Single Cylinder Engine
Performance evaluation of Internal Combustion Engines (ICEs) and setting different emission standards has manifested the importance of pollution reduction as well as the optimal fuel consumption of these engines. Accordingly, the Engine Management Systems (EMS) are utilized which resulted in optimizing the power alongside the decrease in pollutant emission, through preparing the appropriate air...
متن کاملAir-Fuel Ratio Control of a Lean Burn SI Engine Using Fuzzy Self Tuning Method
Reducing the exhaust emissions of an spark ignition engine by means of engine modifications requires consideration of the effects of these modifications on the variations of crankshaft torque and the engine roughness respectively. Only if the roughness does not exceed a certain level the vehicle do not begin to surge. This paper presents a method for controlling the air-fuel ratio for a lean bu...
متن کاملPerformance Evaluation and Emissions improving of Turbocharged DI Diesel Engine with Exhaust Gas Recirculation (EGR)
Nitrogen oxides (NOx) contribute to a wide range of environmental effects including the formation of acid rain and destroy ozone layer. In-cylinder high temperature flame and high oxygen concentration are the parameters which affect the NOx emissions. The EGR system is a very effective way for reducing NOx emission from a diesel engine (via reduction of these parameters), particularly at the...
متن کاملModeling and Control of a High Pressure Combined Air/fuel Injection System
A high pressure combined air-fuel injection system is designed and tested for an experimental free liquid-piston engine compressor. The application discussed utilizes available high pressure air from the compressor’s reservoir, and high pressure fuel to mix and then inject into a combustion chamber. This paper addresses the modeling, design and control for this particular high-pressure air-fuel...
متن کاملModeling and Programming for a Computer Controlled Direct Gasoline Fuel Injection System of SI Engine
A computer controlled direct gasoline fuel injection (DGI) system has been modeled, programmed and constructed for a four-stroke SI engine. Locally available materials have been used for this experimental model. All the old model vehicle were equipped with carburetor for air fuel mixing and later on electronic fuel injection system has been introduced for maintaining better air fuel ratio and m...
متن کامل