Statistical Textural Distinctiveness for Salient Region Detection in Natural Images

نویسندگان

  • Christian Scharfenberger
  • Alexander Wong
  • Khalil Fergani
  • John S. Zelek
  • David A. Clausi
چکیده

A novel statistical textural distinctiveness approach for robustly detecting salient regions in natural images is proposed. Rotational-invariant neighborhood-based textural representations are extracted and used to learn a set of representative texture atoms for defining a sparse texture model for the image. Based on the learnt sparse texture model, a weighted graphical model is constructed to characterize the statistical textural distinctiveness between all representative texture atom pairs. Finally, the saliency of each pixel in the image is computed based on the probability of occurrence of the representative texture atoms, their respective statistical textural distinctiveness based on the constructed graphical model, and general visual attentive constraints. Experimental results using a public natural image dataset and a variety of performance evaluation metrics show that the proposed approach provides interesting and promising results when compared to existing saliency detection methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Textural Distinctiveness in Multi-Parametric Prostate MRI for Suspicious Region Detection

Prostate cancer is the most diagnosed form of cancer, but survival rates are relatively high with sufficiently early diagnosis. Current computer-aided image-based cancer detection methods face notable challenges include noise in MRI images, variability between different MRI modalities, weak contrast, and non-homogeneous texture patterns, making it difficult for diagnosticians to identify tumour...

متن کامل

Salient region detection from natural image statistics

The selection of salient regions in an image is the first step in many computer vision algorithms, e.g. objects recognition, classification or tracking. Our hypothesis is that local image statistics are indicative for saliency. We combine natural image statistics with the detection of salient regions. Particularly, we consider the integrated Weibull distribution as a parameterized model, which ...

متن کامل

Melanoma Detection using Statistical Texture Distinctiveness Segmentation

Melanoma is the most dangerous form of skin cancer. It must be detected in the initial stage to increase the survival rates. In medical field, Melanoma detection is usually done by clinical analysis and biopsy tests. These methods are time consuming, expensive and have many side effects. Thus, an automated melanoma detection system is better to assess a patient’s risk of melanoma in the initial...

متن کامل

Salient regions detection in satellite images using the combination of MSER local features detector and saliency models

Nowadays, due to quality development of satellite images, automatic target detection on these images has been attracted many researchers' attention. Remote-sensing images follow various geospatial targets; these targets are generally man-made and have a distinctive structure from their surrounding areas. Different methods have been developed for automatic target detection.  In most of these met...

متن کامل

Based Image Retrieval using Color Boosted Salient Points and Shape features of an image

Salient points are locations in an image where there is a significant variation with respect to a chosen image feature. Since the set of salient points in an image capture important local characteristics of that image, they can form the basis of a good image representation for content-based image retrieval (CBIR). Salient features are generally determined from the local differential structure o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013