In situ genome editing method suitable for routine generation of germline modified animal models

نویسندگان

  • Masato Ohtsuka
  • Hiromi Miura
  • Naomi Arifin
  • Shingo Nakamura
  • Kenta Wada
  • Channabasavaiah B. Gurumurthy
  • Masahiro Sato
چکیده

Animal genome engineering experimental procedures involve three major steps: isolation of zygotes from pregnant females; microinjection of zygotes, and; transfer of injected zygotes into recipient females, that have been practiced for over three decades. The laboratory set ups intending to performing these procedures require to have sophisticated equipment as well as highly skilled technical personnel. Because of these reasons, animal transgenesis experiments are typically performed at centralized core facilities in most research organizations. We recently showed that all three steps, of animal transgensis, can be bypassed using a method termed GONAD (Genome-editing via Oviductal Nucleic Acids Delivery), by directly electroporating genome editing components into zygotes in situ. Although our first report demonstrated the genome-editing capability, its efficiency was lower than the standard methods using microinjection. Here we investigated critical parameters of GONAD to make it suitable for creating animal models of large genomic deletions, single nucleotide corrections and long sequence insertions. The efficiency of genome editing in the improved GONAD (i-GONAD) method reached to the levels comparable to traditional microinjection methods. The streamlined parameters, and the simplified experimental steps, in the iGONAD method makes it suitable for routine genome editing applications performed both at centralized facilities as well as at the laboratories that lack highly skilled personnel and the sophisticated equipment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Germline Modification and Engineering in Avian Species

Production of genome-edited animals using germline-competent cells and genetic modification tools has provided opportunities for investigation of biological mechanisms in various organisms. The recently reported programmed genome editing technology that can induce gene modification at a target locus in an efficient and precise manner facilitates establishment of animal models. In this regard, t...

متن کامل

Advancing Chimeric Antigen Receptor-Engineered T-Cell Immunotherapy Using Genome Editing Technologies: Challenges and Future Prospects

Chimeric antigen receptor engineered-T (CAR-T) cells also named as living drugs, have been recently known as a breakthrough technology and were applied as an adoptive immunotherapy against different types of cancer. They also attracted widespread interest because of the success of B-cell malignancy therapy achieved by anti-CD19 CAR-T cells. Current genetic toolbox enabled the synthesis of CARs ...

متن کامل

Germline modification of domestic animals.

Genetically-modified domestic animal models are of increasing significance in biomedical research and agriculture. As authentic ES cells derived from domestic animals are not yet available, the prevailing approaches for engineering genetic modifications in those animals are pronuclear microinjection and somatic cell nuclear transfer (SCNT, also known as cloning). Both pronuclear microinjection ...

متن کامل

Genome Wide Association Studies, Next Generation Sequencing and Their Application in Animal Breeding and Genetics: A Review

Recently genetic studies have been revolutionized by next generation sequencing (NGS) technology, and it is expected that the use of this technology will largely eliminate defects in the methods of association studies. The NGS technology is becoming the premier tool in genetics. However, at the moment the use of this method is limited especially in the livestock due to high cost and computation...

متن کامل

Pervasive Genotypic Mosaicism in Founder Mice Derived from Genome Editing through Pronuclear Injection

Genome editing technologies, especially the Cas9/CRISPR system, have revolutionized biomedical research over the past several years. Generation of novel alleles has been simplified to unprecedented levels, allowing for rapid expansion of available genetic tool kits for researchers. However, the issue of genotypic mosaicism has become evident, making stringent analyses of the penetrance of genom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017