Triangular Decomposition of Matrices in a Domain
نویسندگان
چکیده
Deterministic recursive algorithms for the computation of matrix triangular decompositions with permutations like LU and Bruhat decomposition are presented for the case of commutative domains. This decomposition can be considered as a generalization of LU and Bruhat decompositions, because they both may be easily obtained from this triangular decomposition. Algorithms have the same complexity as the algorithm of matrix multiplication.
منابع مشابه
Joint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملTRIANGULAR FUZZY MATRICES
In this paper, some elementary operations on triangular fuzzynumbers (TFNs) are defined. We also define some operations on triangularfuzzy matrices (TFMs) such as trace and triangular fuzzy determinant(TFD). Using elementary operations, some important properties of TFMs arepresented. The concept of adjoints on TFM is discussed and some of theirproperties are. Some special types of TFMs (e.g. pu...
متن کاملMonotone convex sequences and Cholesky decomposition of symmetric Toeplitz matrices
This paper studies off-diagonal decay in symmetric Toeplitz matrices. It is shown that if the generating sequence of the matrix is monotone, positive and convex then the monotonicity and positivity are maintained through triangular decomposition. The work is motivated by recent results on explicit bounds for inverses of triangular matrices. © 2005 Elsevier Inc. All rights reserved. AMS classifi...
متن کاملWreath Product Decompositions for Triangular Matrix Semigroups
We consider wreath product decompositions for semigroups of triangular matrices. We exhibit an explicit wreath product decomposition for the semigroup of all n× n upper triangular matrices over a given field k, in terms of aperiodic semigroups and affine groups over k. In the case that k is finite this decomposition is optimal, in the sense that the number of group terms is equal to the group c...
متن کاملNon-additive Lie centralizer of infinite strictly upper triangular matrices
Let $mathcal{F}$ be an field of zero characteristic and $N_{infty}(mathcal{F})$ be the algebra of infinite strictly upper triangular matrices with entries in $mathcal{F}$, and $f:N_{infty}(mathcal{F})rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $N_{infty }(mathcal{F})$; that is, a map satisfying that $f([X,Y])=[f(X),Y]$ for all $X,Yin N_{infty}(mathcal{F})...
متن کامل