Antigenic probes locate binding sites for the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, aldolase and phosphofructokinase on the actin monomer in microfilaments.

نویسندگان

  • C Méjean
  • F Pons
  • Y Benyamin
  • C Roustan
چکیده

The topology of the interfaces between actin monomers in microfilaments and three glycolytic enzymes (glyceraldehyde-3-phosphate dehydrogenase, aldolase and phosphofructokinase) was investigated using several specific antibodies directed against precisely located sequences in actin. A major contact area for glyceraldehyde-3-phosphate dehydrogenase was characterized in a region near residue 103. This interaction altered, by long-range conformational changes, the reactivity of antigenic epitopes in the C-terminal part of actin. The interface between actin and aldolase appeared to involve a sequence around residue 299 in the C-terminal region of actin. The interaction of phosphofructokinase, in contrast, modified the reactivity of all antibodies tested. Finally, the phosphagen kinases arginine kinase and creatine kinase showed no interaction with the microfilament.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transfer of a Redox-Signal through the Cytosol by Redox-Dependent Microcompartmentation of Glycolytic Enzymes at Mitochondria and Actin Cytoskeleton

The cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12, GapC) plays an important role in glycolysis by providing the cell with ATP and NADH. Interestingly, despite its glycolytic function in the cytosol, GAPDH was reported to possess additional non-glycolytic activities, correlating with its nuclear, or cytoskeletal localization in animal cells. In transiently transformed me...

متن کامل

Mapping of glycolytic enzyme-binding sites on human erythrocyte band 3.

Previous work has shown that GAPDH (glyceraldehyde-3-phosphate dehydrogenase), aldolase, PFK (phosphofructokinase), PK (pyruvate kinase) and LDH (lactate dehydrogenase) assemble into a GE (glycolytic enzyme) complex on the inner surface of the human erythrocyte membrane. In an effort to define the molecular architecture of this complex, we have undertaken to localize the binding sites of these ...

متن کامل

Glycolytic enzymes in Zymomonas mobilis.

Raps, Shirley (University of Illinois, Urbana) and R. D. DeMoss. Glycolytic enzymes in Zymomonas mobilis. J. Bacteriol. 84:115-118. 1962-An enzyme extract of Zymomonas mobilis (Pseudomonas lindneri) was capable of fermenting glucose-6-phosphate to CO(2) and ethanol. The extract was found to contain phosphohexoisomerase, aldolase, and glyceraldehyde-3-phosphate dehydrogenase, but no demonstrable...

متن کامل

Characterization of Glycolytic Enzyme Interactions with Murine Erythrocyte Membranes in Wild type and Membrane Protein Knockout Mice Short title for the running head: GLYCOLYTIC ENZYME INTERACTIONS WITH ERYTHROCYTE MEMBRANES

Previous research has shown that glycolytic enzymes (GEs) exist as multi-enzyme complexes on the inner surface of human erythrocyte membranes. Because GE binding sites have been mapped to sequences on the membrane protein, band 3, that are not conserved in other mammalian homologs, the question arose whether GEs can organize into complexes on other mammalian erythrocyte membranes. To address th...

متن کامل

Targeting of several glycolytic enzymes using RNA interference reveals aldolase affects cancer cell proliferation through a non-glycolytic mechanism.

In cancer, glucose uptake and glycolysis are increased regardless of the oxygen concentration in the cell, a phenomenon known as the Warburg effect. Several (but not all) glycolytic enzymes have been investigated as potential therapeutic targets for cancer treatment using RNAi. Here, four previously untargeted glycolytic enzymes, aldolase A, glyceraldehyde 3-phosphate dehydrogenase, triose phos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 264 3  شماره 

صفحات  -

تاریخ انتشار 1989