Establishment of Epithelial Attachment on Titanium Surface Coated with Platelet Activating Peptide
نویسندگان
چکیده
The aim of this study was to produce epithelial attachment on a typical implant abutment surface of smooth titanium. A challenging complication that hinders the success of dental implants is peri-implantitis. A common cause of peri-implantitis may results from the lack of epithelial sealing at the peri-implant collar. Histologically, epithelial sealing is recognized as the attachment of the basement membrane (BM). BM-attachment is promoted by activated platelet aggregates at surgical wound sites. On the other hand, platelets did not aggregate on smooth titanium, the surface typical of the implant abutment. We then hypothesized that epithelial BM-attachment was produced when titanium surface was modified to allow platelet aggregation. Titanium surfaces were coated with a protease activated receptor 4-activating peptide (PAR4-AP). PAR4-AP coating yielded rapid aggregation of platelets on the titanium surface. Platelet aggregates released robust amount of epithelial chemoattractants (IGF-I, TGF-β) and growth factors (EGF, VEGF) on the titanium surface. Human gingival epithelial cells, when they were co-cultured on the platelet aggregates, successfully attached to the PAR4-AP coated titanium surface with spread laminin5 positive BM and consecutive staining of the epithelial tight junction component ZO1, indicating the formation of complete epithelial sheet. These in-vitro results indicate the establishment of epithelial BM-attachment to the titanium surface.
منابع مشابه
Titanium Surface Coating with a Laminin-Derived Functional Peptide Promotes Bone Cell Adhesion
Laminin-derived peptide coatings can enhance epithelial cell adhesion to implants, and the positive effect of these peptides on bone cell adhesion has been anticipated. The purpose of this study was to evaluate the improvement in bone cell attachment to and activity on titanium (Ti) scaffolds coated with a laminin-derived functional peptide, Ln2-P3 (the DLTIDDSYWYRI motif). Four Ti disc surface...
متن کاملSoft tissue attachment to titanium implants coated with growth factors.
BACKGROUND Enhancing the connective tissue seal around dental implants may be an important factor in implant survival. PURPOSE The objective of the study was to investigate the effect of implant surface modification with either platelet-derived growth factor (PDGF) or enamel matrix derivative (EMD) on connective tissue attachment to titanium implants. MATERIALS AND METHODS Eighteen implants...
متن کاملApplication of novel anodized titanium for enhanced recruitment of H9C2 cardiac myoblast
Objective(s):Anodized treated titanium surfaces, have been proposed as potential surfaces with better cell attachment capacities. We have investigated the adhesion and proliferation properties of H9C2 cardiac myoblasts on anodized treated titanium surface. Materials and Methods: Surface topography and anodized tubules were examined by high-resolution scanning electron microscopy (SEM). Contro...
متن کاملSurface modification for titanium implants by hydroxyapatite nanocomposite
Background: Titanium (Ti) implants are commonly coated with hydroxyapatite (HA). However, HA has some disadvantages such as brittleness, low tensile strength and fracture toughness. It is desirable to combine the excellent mechanical properties of ZrO2 and the chemical inertness of Al2O3 with respect to the purpose of this project which was coating Ti implants with HA-ZrO2-Al2O3 to modify the s...
متن کاملNano-structure TiO2 film coating on 316L stainless steel via sol-gel technique for blood compatibility improvement
Objective(s): Titanium oxides are known to be appropriate hemocompatible materials which are suggested as coatings for blood-contacting devices. Little is known about the influence of nanometric crystal structure, layer thickness, and semiconducting characteristics of TiO2 on blood hemostasis. Materials and Methods: Having used sol-gel dip coating method in this study, TiO2 thin films were d...
متن کامل