Effects of transforming growth factor beta s and basic fibroblast growth factor on articular chondrocytes obtained from immobilised rabbit knees.
نویسندگان
چکیده
OBJECTIVE To clarify the effects of transforming growth factor beta 1 (TGF beta 1), TGF beta 2, and basic fibroblast growth factor (bFGF) on cell proliferation and proteoglycan (PG) synthesis in articular chondrocytes obtained from immobilised rabbit knees. METHODS The right knees of rabbits were immobilised in full extension for up to 42 days using fiberglass casts. Specimens for histology were stained with safranin O. Chondrocytes were isolated from the weight bearing regions of the femur and tibia of the immobilised knees and cultured with combinations of growth factors. Cell proliferation and PG synthesis were determined by 3H-thymidine and 35S-sulphate incorporations. RESULTS Histological study revealed loss of metachromasia in the articular cartilage at seven days, fissuring and cell clusters at 28 days, and loss of cartilage layers 42 days after immobilisation. Radioisotope assay of the chondrocytes revealed no remarkable change in DNA synthesis in the presence of either TGF beta 1 or TGF beta 2 alone. bFGF markedly stimulated cell proliferation in specimens obtained 0 to seven days after immobilisation. The combination of either TGF beta 1 or TGF beta 2 with bFGF had a synergistic effect, inducing significant increases in DNA synthesis four, seven, and 14 days after immobilisation. PG synthesis by chondrocytes from immobilised joints was not significantly altered by these agents. CONCLUSION TGF beta 1 or TGF beta 2 in combination with bFGF exert synergistic effects on cell proliferation in articular chondrocytes obtained from the rabbit knee during the early days after immobilisation by a cast. These results suggest a critical role of cytokine combinations in the development of articular cartilage degeneration after immobilisation.
منابع مشابه
Transforming Growth Factor-β1 Preserves Bovine Nasal Cartilage against Degradation Induced by Interleukin-1α in Explant Culture
Background and Aims: Chondrocytes and their differentiation play a central role in joint diseases. Effect of the transforming growth factor (TGF)-β1 on chondrocyte characteristics and differentiation is not clearly understood. This study was undertaken to investigate the effects of TGF-β1 on tissue characteristics and morphology of chondrocytes against degradation induced by interleuk...
متن کاملEvaluation of Transforming Growth Factor Beta 1 and Curcumin on Proliferation and Differentiation of Nasal-Derived Chondrocyte Seeded on the Fibrin Glue Scaffold
Introduction: Natural biomaterials and growth factors are key factors in tissue engineering. The objective of the present study was to evaluate transforming growth factor beta 1 (TGF-β1) and curcumin on proliferation and differentiation of nasal-derived chondrocyte seeded on the fibrin glue scaffold. Methods: Chondrocytes were isolated from nasal samples. Nasal-derived chon...
متن کاملHIV-1 transactivator protein Tat induces proliferation and TGF beta expression in human articular chondrocytes
The human immunodeficiency virus-1 (HIV-1) protein Tat binds to cell surface antigens and can regulate cellular responses. Tat has similar immunosuppressive effects as transforming growth factor-beta (TGF beta) and both inhibit lymphocyte proliferation. TGF beta is expressed by primary human articular chondrocytes and is their most potent growth factor. The present study analyzed the interactio...
متن کاملAdverse effects of adenovirus-mediated gene transfer of human transforming growth factor beta 1 into rabbit knees
To examine the effect of transforming growth factor (TGF)-beta1 on the regulation of cartilage synthesis and other articular pathologies, we used adenovirus-mediated intra-articular gene transfer of TGF-beta1 to both naïve and arthritic rabbit knee joints. Increasing doses of adenoviral vector expressing TGF-beta1 were injected into normal and antigen-induced arthritis rabbit knee joints throug...
متن کاملOptimization of the Expansion and Differentiation of Rabbit Chondrocytes In Vitro
OBJECTIVE To develop a tissue culture expansion method for rabbit chondrocytes that promotes robust expansion while preserving chondrogenic potential. DESIGN Rabbit chondrocytes isolated from articular or auricular chondrocytes were assessed for chondrogenic differentiation potential versus population doubling using different expansion and differentiation conditions. Expansion conditions incl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of the rheumatic diseases
دوره 55 3 شماره
صفحات -
تاریخ انتشار 1996