A Practically Efficient Approach for Solving Adaptive Distributionally Robust Linear Optimization Problems

نویسندگان

  • Dimitris Bertsimas
  • Melvyn Sim
  • Meilin Zhang
چکیده

We develop a modular and tractable framework for solving an adaptive distributionally robust linear optimization problem, where we minimize the worst-case expected cost over an ambiguity set of probability distributions. The adaptive distrbutaionally robust optimization framework caters for dynamic decision making, where decisions can adapt to the uncertain outcomes as they unfold in stages. For tractability considerations, we focus on a class of second-order conic (SOC) representable ambiguity set, though our results can easily be extended to more general conic representations. We show that the adaptive distributionally robust linear optimization problem can be formulated as a classical robust optimization problem. To obtain tractable formulation, we approximate the adaptive distributionally robust optimization problem using linear decision rule (LDR) techniques. More interestingly, by incorporating the primary and auxiliary random variables of the lifted ambiguity set in the LDR approximation, we can significantly improve the solutions and for a class of adaptive distributionally robust optimization problems, exact solutions can also be obtained. Using the new LDR approximation, we can transform the distributionally adaptive robust optimization problem to a classical robust optimization problem with an SOC representable uncertainty set. Finally, to demonstrate the potential for solving management decision problems, we develop an algebraic modeling package and illustrate how it can be used to facilitate modeling and obtain high quality solutions for addressing a medical appointment scheduling problem and a multiperiod inventory control problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributionally Adaptive Optimization

We develop a modular and tractable framework for solving a distributionally adaptive optimization problem, where we minimize the worst-case expected cost over an ambiguity set of probability distributions. The adaptive optimization framework caters for dynamic decision making, where decisions can adapt to the uncertain outcomes as they unfold in stages. We propose a second-order conic (SOC) rep...

متن کامل

Conic Programming Reformulations of Two-Stage Distributionally Robust Linear Programs over Wasserstein Balls

Adaptive robust optimization problems are usually solved approximately by restricting the adaptive decisions to simple parametric decision rules. However, the corresponding approximation error can be substantial. In this paper we show that two-stage robust and distributionally robust linear programs can often be reformulated exactly as conic programs that scale polynomially with the problem dim...

متن کامل

A NEW APPROACH FOR SOLVING FULLY FUZZY QUADRATIC PROGRAMMING PROBLEMS

Quadratic programming (QP) is an optimization problem wherein one minimizes (or maximizes) a quadratic function of a finite number of decision variable subject to a finite number of linear inequality and/ or equality constraints. In this paper, a quadratic programming problem (FFQP) is considered in which all cost coefficients, constraints coefficients, and right hand side are characterized by ...

متن کامل

Tractable Distributionally Robust Optimization with Data

We present a unified and tractable framework for distributionally robust optimization that could encompass a variety of statistical information including, among others things, constraints on expectation, conditional expectation, and disjoint confidence sets with uncertain probabilities defined by φ-divergence. In particular, we also show that the Wasserstein-based ambiguity set has an equivalen...

متن کامل

Data-driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations

We consider stochastic programs where the distribution of the uncertain parameters is only observable through a finite training dataset. Using the Wasserstein metric, we construct a ball in the space of (multivariate and non-discrete) probability distributions centered at the uniform distribution on the training samples, and we seek decisions that perform best in view of the worst-case distribu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017