Radial hydraulic conductivity along developing onion roots.
نویسندگان
چکیده
Although most studies have shown that water uptake varies along the length of a developing root, there is no consistent correlation of this pattern with root anatomy. In the present study, water movement into three zones of onion roots was measured by a series of mini-potometers. Uptake was least in the youngest zone (mean hydraulic conductivity, Lpr = 1.5 x 10(-7) +/- 0.34 x 10(-7) m MPa-1 s-1; +/- SE, n = 10 roots) in which the endodermis had developed only Casparian bands and the exodermis was immature. Uptake was significantly greater in the middle zone (Lpr = 2.4 x 10(-7) +/- 0.43 x 10(-7) m MPa-1 s-1; +/- SE, n = 10 roots) which had a mature exodermis with both Casparian bands and suberin lamellae, and continued at this level in the oldest zone in which the endodermis had also developed suberin lamellae (Lpr = 2.8 x 10(-7) +/- 0.30 x 10(-7) m MPa-1 s-1; +/- SE, n = 10 roots). Measurements of the hydraulic conductivities of individual cells (Lp) in the outer cortex using a cell pressure probe indicated that this parameter was uniform in all three zones tested (Lp = 1.3 x 10(-6) +/- 0.01 x 10(-6) m MPa-1 s-1; +/- SE, n = 60 cells). Lp of the youngest zone was lowered by mercuric chloride treatment, indicating the involvement of mercury-sensitive water channels (aquaporins). Water flow in the older two root zones measured by mini-potometers was also inhibited by mercuric chloride, despite the demonstrated impermeability of their exodermal layers to this substance. Thus, water channels in the epidermis and/or exodermis of the older regions were especially significant for water flow. The results of this and previous studies are discussed in terms of two models. The first, which describes maize root with an immature exodermis, is the 'uniform resistance model' where hydraulic resistances are evenly distributed across the root cylinder. The second, which describes the onion root with a mature exodermis, is the 'non-uniform resistance model' where resistances can be variable and are concentrated in a certain layer(s) on the radial path.
منابع مشابه
Onion root water transport sensitive to water channel and K+ channel inhibitors.
Transroot osmotic water flux (Jos) and radial hydraulic conductivity (Lpr) in onion roots were greatly increased by three means; infiltration of roots by pressurization, repetition of osmosis and chilling at 5 degrees C. Jos was strongly reduced by the water channel inhibitor HgCl2 (91%) and the K+ channel inhibitor nonyltriethylammonium (C9, 75%), which actually made the membrane potential of ...
متن کاملLinking Hydraulic Conductivity to Anatomy in Plants that Vary in Specific Root Length
In Citrus L. sp., specific root length of whole root systems has been correlated positively with root hydraulic conductivity, but there is little mechanistic understanding of the causes for this association. The hydraulic conductivity of individual roots in relation to root anatomical characteristics in seedlings of three citrus rootstocks [sour orange (SO) (Citrus aurantium L.), trifoliate ora...
متن کاملReduction of Hydraulic Conductivity during Inhibition of Exudation from Excised Maize and Barley Roots.
The uncoupler, carbonyl cyanide m-chlorophenyl hydrazone (CCCP) is shown to reduce the hydraulic conductivity of barley, maize, mung bean, and onion roots. In barley and maize, the reduction in exudation from excised roots is partly due to the reduction in the permeability of the root to water (I(p)), but it can be inferred that the rate of salt release to the xylem, is also inhibited. The acti...
متن کاملWater uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.)
Prior to an assessment of the role of aquaporins in root water uptake, the main path of water movement in different types of root and driving forces during day and night need to be known. In the present study on hydroponically grown barley (Hordeum vulgare L.) the two main root types of 14- to 17-d-old plants were analysed for hydraulic conductivity in dependence of the main driving force (hydr...
متن کاملAxial and Radial Hydraulic Resistance to Roots of Maize (Zea mays L.).
A root pressure probe was employed to measure hydraulic properties of primary roots of maize (Zea mays L.). The hydraulic conductivity (Lp(r)) of intact root segments was determined by applying gradients of hydrostatic and osmotic pressure across the root cylinder. In hydrostatic experiments, Lp(r) was constant along the segment except for an apical zone of approximately 20 millimeters in lengt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 51 344 شماره
صفحات -
تاریخ انتشار 2000