Weil Descent Attack for Artin-Schreier Curves

نویسنده

  • Nicolas Thériault
چکیده

In this paper, we show how the method introduced by Gaudry, Hess and Smart can be extended to a family of algebraic curves using Artin-Schreier extensions. This family also extends the number of hyperelliptic curves in characteristic 2 vulnarable to the Weil decent attack obtained by Galbraith. We also show that the genus of the resulting curve will be one of two easily computable values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalising the GHS Attack on the Elliptic Curve Discrete Logarithm Problem

We generalise the Weil descent construction of the GHS attack on the elliptic curve discrete logarithm problem (ECDLP) to arbitrary Artin-Schreier extensions. We give a formula for the characteristic polynomial of Frobenius of the obtained curves and prove that the large cyclic factor of the input elliptic curve is not contained in the kernel of the composition of the conorm and norm maps. As a...

متن کامل

The GHS Attack Revisited

We generalize the Weil descent construction of the GHS attack to arbitrary Artin-Schreier extensions. We give a formula for the characteristic polynomial of Frobenius of the obtained curves and prove that the large cyclic factor of the input elliptic curve is not contained in the kernel of the composition of the conorm and norm maps. As an application we almost square the number of elliptic cur...

متن کامل

On the number of rational points on curves over finite fields with many automorphisms

Using Weil descent, we give bounds for the number of rational points on two families of curves over finite fields with a large abelian group of automorphisms: Artin-Schreier curves of the form y−y = f(x) with f ∈ Fqr [x], on which the additive group Fq acts, and Kummer curves of the form y q−1 e = f(x), which have an action of the multiplicative group Fq . In both cases we can remove a √ q fact...

متن کامل

Big Improvements of the Weil Bound for Artin-schreier Curves

For the Artin-Schreier curve y − y = f(x) defined over a finite field Fq of q elements, the celebrated Weil bound for the number of Fqr -rational points can be sharp, especially in supersingular cases and when r is divisible. In this paper, we show how the Weil bound can be significantly improved, using ideas from moment L-functions and Katz’s work on `-adic monodromy calculations. Roughly spea...

متن کامل

Families of Supersingular Artin - Schreier Curves ( Preliminary Version )

In this brief note, we prove the following two Artin-Schreier curves are supersin-gular.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003