A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron
نویسندگان
چکیده
Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun.
منابع مشابه
Operation of Spindt-Type, Carbon Nanotube Cold Cathodes in a Hall Effect Thruster Environment
Electric propulsion devices for space applications greatly reduce the propellant mass requirements on a spacecraft in comparison to chemical rockets. To date, gridded ion engines and Hall effect thrusters (HETs) rely on thermionic hollow cathodes to supply electrons for propellant ionization and ion beam neutralization. Hollow cathodes consume up to 10% of the total propellant used in low-power...
متن کاملParametrically Optimized Carbon Nanotube-Coated Cold Cathode Spindt Arrays
Here, we investigate, through parametrically optimized macroscale simulations, the field electron emission from arrays of carbon nanotube (CNT)-coated Spindts towards the development of an emerging class of novel vacuum electron devices. The present study builds on empirical data gleaned from our recent experimental findings on the room temperature electron emission from large area CNT electron...
متن کاملFormation of Laminar Electron Flow for a High-Power Sub-THz Gyrotron
This paper describes the design of a magnetron-injection gun for a 100 kW, 300 GHz gyrotron. With an increase in power and frequency, performance of the gyrotron becomes quite sensitive to the quality of the electron beam. Formation of a laminar electron flow is essential for the realization of a high quality beam with small velocity spread. In this study, a new method is proposed for the evalu...
متن کاملMicroscopic origin of current degradation of fully-sealed carbon-nanotube field emission display
The current-degradation mechanism of a fully sealed, carbon-nanotube field emission display is investigated experimentally and theoretically. From residual gas analysis, it is strongly evidenced that CH3 radicals from the organic materials in the paste deteriorate emission properties. Based on ab initio methods, it is found that CH3 radicals can increase electrical resistance of the nanotube an...
متن کاملTerahertz Spectroscopy of Individual Single-Walled Carbon Nanotubes as a Probe of Luttinger Liquid Physics.
Luttinger liquid theory predicts that collective electron excitations due to strong electron-electron interactions in a one-dimensional (1D) system will result in a modification of the collective charge-propagation velocity. By utilizing a circuit model for an individual metallic single-walled carbon nanotube as a nanotransmission line, it has been shown that the frequency-dependent terahertz i...
متن کامل