Motif discovery programs

ثبت نشده
چکیده

BayesMD [1] is a probabilistic, Bayesian model for predicting novel transcription factor binding sites. Biological information about binding sites properties, background sequence models, occurrence and positional preferences are built into the model in modular fashion. Mixture prior parameters for the motif and background are trained using information on TFBSs and organismspecific promoter sequences from available databases. The main feature of this method is the use of a positional prior that provides a priori information about the location and number of occurrences of the sought motifs. In our study, the BayesMD program was run on its default parameters (2 order mixture background) and without informative positional priors, since we decided not to any mapping of data. The motif length was provided as input (w=8 for synthetic and Nanog and w=18 for p53 and ESR1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tmod: toolbox of motif discovery

SUMMARY Motif discovery is an important topic in computational transcriptional regulation studies. In the past decade, many researchers have contributed to the field and many de novo motif-finding tools have been developed, each may have a different strength. However, most of these tools do not have a user-friendly interface and their results are not easily comparable. We present a software cal...

متن کامل

Development of an Efficient Hybrid Method for Motif Discovery in DNA Sequences

This work presents a hybrid method for motif discovery in DNA sequences. The proposed method called SPSO-Lk, borrows the concept of Chebyshev polynomials and uses the stochastic local search to improve the performance of the basic PSO algorithm as a motif finder. The Chebyshev polynomial concept encourages us to use a linear combination of previously discovered velocities beyond that proposed b...

متن کامل

A methodology for motif discovery employing iterated cluster re-assignment.

Motif discovery is a crucial part of regulatory network identification, and therefore widely studied in the literature. Motif discovery programs search for statistically significant, well-conserved and over-represented patterns in given promoter sequences. When gene expression data is available, there are mainly three paradigms for motif discovery; cluster-first, regression, and joint probabili...

متن کامل

WebMOTIFS: automated discovery, filtering and scoring of DNA sequence motifs using multiple programs and Bayesian approaches

WebMOTIFS provides a web interface that facilitates the discovery and analysis of DNA-sequence motifs. Several studies have shown that the accuracy of motif discovery can be significantly improved by using multiple de novo motif discovery programs and using randomized control calculations to identify the most significant motifs or by using Bayesian approaches. WebMOTIFS makes it easy to apply t...

متن کامل

MotifViz: an analysis and visualization tool for motif discovery

Detecting overrepresented known transcription factor binding motifs in a set of promoter sequences of co-regulated genes has become an important approach to deciphering transcriptional regulatory mechanisms. In this paper, we present an interactive web server, MotifViz, for three motif discovery programs, Clover, Rover and Motifish, covering most available flavors of algorithms for achieving th...

متن کامل

Dissolving medical waste.

WebMOTIFS provides a web interface that facilitates the discovery and analysis of DNA-sequence motifs. Several studies have shown that the accuracy of motif discovery can be significantly improved by using multiple de novo motif discovery programs and using randomized control calculations to identify the most significant motifs or by using Bayesian approaches. WebMOTIFS makes it easy to apply t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009