Anaerobic degradation of pimelate by newly isolated denitrifying bacteria.
نویسندگان
چکیده
A C7 dicarboxylic (pimelic) acid derivative is postulated as an intermediate in anaerobic degradation of benzoate. Four strains of Gram-negative, nitrate-reducing bacteria capable of growth with both pimelate and benzoate as sole carbon and energy source were isolated. The metabolism of strain LP-1, which was enriched from activated sludge with pimelate as substrate, was studied in detail. This strain grew only with oxygen or with oxidized nitrogen compounds as electron acceptor. In the presence of nitrate, a wide range of substrates excluding C1 compounds was degraded. The new isolate was catalase- and oxidase-positive, and had one single polar flagellum. Strain LP-1 was tentatively classified within the family Pseudomonadaceae. The catabolism of pimelate and benzoate was studied in cell-free extracts of strain LP-1. Both acids were activated with coenzyme A in a Mg(2E)- and ATP-dependent reaction. The corresponding acyl-CoA synthetases were specifically induced by the respective growth substrate. Pimelate was also activated by CoA transfer from succinyl-CoA. Pimelyl-CoA was oxidized by cell-free extracts in the presence of potassium ferricyanide. Degradation to glutaryl-CoA and acetyl-CoA proceeded by a sequence of beta-oxidation-like reactions. Glutaryl-CoA dehydrogenase and glutaconyl-CoA decarboxylase activities were expressed in cells grown with pimelate or benzoate, indicating the specific involvement of these enzyme activities in anaerobic degradation of these two acids. Enzyme activities responsible for further degradation of the resulting crotonyl-CoA to acetyl-CoA via classical beta-oxidation were also detected.
منابع مشابه
Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium.
New denitrifying bacteria that could degrade pyridine under both aerobic and anaerobic conditions were isolated from industrial wastewater. The successful enrichment and isolation of these strains required selenite as a trace element. These isolates appeared to be closely related to Azoarcus species according to the results of 16S rRNA sequence analysis. An isolated strain, pF6, metabolized pyr...
متن کاملAerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1.
A newly isolated denitrifying bacterium, Thauera sp. strain DNT-1, grew on toluene as the sole carbon and energy source under both aerobic and anaerobic conditions. When this strain was cultivated under oxygen-limiting conditions with nitrate, first toluene was degraded as oxygen was consumed, while later toluene was degraded as nitrate was reduced. Biochemical observations indicated that initi...
متن کاملAnaerobic metabolism of phthalate and other aromatic compounds by a denitrifying bacterium.
The anaerobic metabolism of phthalate and other aromatic compounds by the denitrifying bacterium Pseudomonas sp. strain P136 was studied. Benzoate, cyclohex-1-ene-carboxylate, 2-hydroxycyclohexanecarboxylate, and pimelate were detected as predominant metabolic intermediates during the metabolism of three isomers of phthalate, m-hydroxybenzoate, p-hydroxybenzoate, and cyclohex-3-ene-carboxylate....
متن کاملAnaerobic degradation of 4-methylbenzoate by a newly isolated denitrifying bacterium, strain pMbN1.
A novel alphaproteobacterium isolated from freshwater sediments, strain pMbN1, degrades 4-methylbenzoate to CO(2) under nitrate-reducing conditions. While strain pMbN1 utilizes several benzoate derivatives and other polar aromatic compounds, it cannot degrade p-xylene or other hydrocarbons. Based on 16S rRNA gene sequence analysis, strain pMbN1 is affiliated with the genus Magnetospirillum.
متن کاملAnaerobic degradation of aromatic compounds by magnetospirillum strains: isolation and degradation genes.
Four Magnetospirillum strains degrading toluene, phenol, benzoate, and other aromatic compounds under anaerobic conditions were isolated from denitrifying enrichment cultures. One of the isolates, toluene-degrading strain TS-6, contained genes that are homologous to those encoding benzylsuccinate synthase (Bss) and benzoyl-CoA reductase (Bcr), two key enzymes of anaerobic toluene and benzoate d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 140 ( Pt 2) شماره
صفحات -
تاریخ انتشار 1994