A "Learning from Models" Cognitive Fault Diagnosis System
نویسندگان
چکیده
We present an unsupervised cognitive fault diagnosis framework for nonlinear dynamic systems working in the space of approximating models. The diagnosis system detects and classifies faults by relying on a fault dictionary that is empty at the beginning of the system’s life and is automatically populated as faults occur. Outliers are treated as separate instances until enough confidence is built and either are integrated in existing classes or promoted to a new faults class. Simulation results show the effectiveness of the proposed approach.
منابع مشابه
Fault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملModel-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines
In this paper, the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented. A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...
متن کاملLearning in the Model Space for Fault Diagnosis
The emergence of large scaled sensor networks facilitates the collection of large amounts of real-time data to monitor and control complex engineering systems. However, in many cases the collected data may be incomplete or inconsistent, while the underlying environment may be timevarying or un-formulated. In this paper, we have developed an innovative cognitive fault diagnosis framework that ta...
متن کاملCognitive fault diagnosis in Tennessee Eastman Process using learning in the model space
This paper focuses on the Tennessee Eastman (TE) process and for the first time investigates it in a cognitive way. The cognitive fault diagnosis does not assume prior knowledge of the fault numbers and signatures. This approach firstly employs deterministic reservoir models to fit the multiple-input and multiple-output signals in the TE process, which map the signal space to the (reservoir) mo...
متن کاملDeveloping A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults
Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...
متن کامل