Proactive Transfer Learning for Heterogeneous Feature and Label Spaces

نویسندگان

  • Seungwhan Moon
  • Jaime G. Carbonell
چکیده

We propose a framework for learning new target tasks by leveraging existing heterogeneous knowledge sources. Unlike the traditional transfer learning, we do not require explicit relations between source and target tasks, and instead let the learner actively mine transferable knowledge from a source dataset. To this end, we develop (1) a transfer learning method for source datasets with heterogeneous feature and label spaces, and (2) a proactive learning framework which progressively builds bridges between target and source domains in order to improve transfer accuracy. Experiments on a challenging transfer learning scenario (learning from hetero-lingual datasets with non-overlapping label spaces) show the efficacy of the proposed approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed-Transfer: Transfer Learning over Mixed Graphs

Heterogeneous transfer learning has been proposed as a new learning strategy to improve performance in a target domain by leveraging data from other heterogeneous source domains where feature spaces can be different across different domains. In order to connect two different spaces, one common technique is to bridge feature spaces by using some co-occurrence data. For example, annotated images ...

متن کامل

Supervised Heterogeneous Domain Adaptation via Random Forests

Heterogeneity of features and lack of correspondence between data points of different domains are the two primary challenges while performing feature transfer. In this paper, we present a novel supervised domain adaptation algorithm (SHDA-RF) that learns the mapping between heterogeneous features of different dimensions. Our algorithm uses the shared label distributions present across the domai...

متن کامل

Hierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents

This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...

متن کامل

Completely Heterogeneous Transfer Learning with Attention - What And What Not To Transfer

We study a transfer learning framework where source and target datasets are heterogeneous in both feature and label spaces. Specifically, we do not assume explicit relations between source and target tasks a priori, and thus it is crucial to determine what and what not to transfer from source knowledge. Towards this goal, we define a new heterogeneous transfer learning approach that (1) selects...

متن کامل

Heterogeneous Transfer Learning for Image Clustering via the SocialWeb

In this paper, we present a new learning scenario, heterogeneous transfer learning, which improves learning performance when the data can be in different feature spaces and where no correspondence between data instances in these spaces is provided. In the past, we have classified Chinese text documents using English training data under the heterogeneous transfer learning framework. In this pape...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016