Calibration of conditional composite likelihood for Bayesian inference on Gibbs random fields
نویسندگان
چکیده
Gibbs random fields play an important role in statistics, however, the resulting likelihood is typically unavailable due to an intractable normalizing constant. Composite likelihoods offer a principled means to construct useful approximations. This paper provides a mean to calibrate the posterior distribution resulting from using a composite likelihood and illustrate its performance in several examples.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملInference on Pr(X > Y ) Based on Record Values From the Power Hazard Rate Distribution
In this article, we consider the problem of estimating the stress-strength reliability $Pr (X > Y)$ based on upper record values when $X$ and $Y$ are two independent but not identically distributed random variables from the power hazard rate distribution with common scale parameter $k$. When the parameter $k$ is known, the maximum likelihood estimator (MLE), the approximate Bayes estimator and ...
متن کاملBayesian Inference from Composite Likelihoods, with an Application to Spatial Extremes
Composite likelihoods are increasingly used in applications where the full likelihood is analytically unknown or computationally prohibitive. Although some frequentist properties of the maximum composite likelihood estimator are akin to those of the maximum likelihood estimator, Bayesian inference based on composite likelihoods is in its early stages. This paper discusses inference when one use...
متن کاملClassical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data
Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...
متن کاملLearning with Blocks: Composite Likelihood and Contrastive Divergence
Composite likelihood methods provide a wide spectrum of computationally efficient techniques for statistical tasks such as parameter estimation and model selection. In this paper, we present a formal connection between the optimization of composite likelihoods and the well-known contrastive divergence algorithm. In particular, we show that composite likelihoods can be stochastically optimized b...
متن کامل