Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer's disease.

نویسندگان

  • J P Sheehan
  • R H Swerdlow
  • S W Miller
  • R E Davis
  • J K Parks
  • W D Parker
  • J B Tuttle
چکیده

Alzheimer's disease (AD) is associated with defects in mitochondrial function. Mitochondrial-based disturbances in calcium homeostasis, reactive oxygen species (ROS) generation, and amyloid metabolism have been implicated in the pathophysiology of sporadic AD. The cellular consequences of mitochondrial dysfunction, however, are not known. To examine these consequences, mitochondrially transformed cells (cybrids) were created from AD patients or disease-free controls. Mitochondria from platelets were fused to rho0 cells created by depleting the human neuroblastoma line SH-SY5Y of its mitochondrial DNA (mtDNA). AD cybrids demonstrated a 52% decrease in electron transport chain (ETC) complex IV activity but no difference in complex I activity compared with control cybrids or SH-SY5Y cells. This mitochondrial dysfunction suggests a transferable mtDNA defect associated with AD. ROS generation was elevated in the AD cybrids. AD cybrids also displayed an increased basal cytosolic calcium concentration and enhanced sensitivity to inositol-1,4, 5-triphosphate (InsP3)-mediated release. Furthermore, they recovered more slowly from an elevation in cytosolic calcium induced by the InsP3 agonist carbachol. Mitochondrial calcium buffering plays a major role after this type of perturbation. beta-amyloid (25-35) peptide delayed the initiation of calcium recovery to a carbachol challenge and slowed the recovery rate. Nerve growth factor reduced the carbachol-induced maximum and moderated the recovery kinetics. Succinate increased ETC activity and partially restored the AD cybrid recovery rate. These subtle alterations in calcium homeostasis and ROS generation might lead to increased susceptibility to cell death under circumstances not ordinarily toxic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease

Alzheimer's disease (AD) is a devastating neurodegenerative disorder without a cure. Most AD cases are sporadic where age represents the greatest risk factor. Lack of understanding of the disease mechanism hinders the development of efficacious therapeutic approaches. The loss of synapses in the affected brain regions correlates best with cognitive impairment in AD patients and has been conside...

متن کامل

Calcium and mitochondrial reactive oxygen species generation: how to read the facts.

A number of recent discoveries indicate that abnormal Ca2+ signaling, oxidative stress, and mitochondrial dysfunction are involved in the neuronal damage in Alzheimer's disease. However, the literature on the interactions between these factors is controversial especially in the interpretation of the cause-effect relationship between mitochondrial damage induced by Ca2+ overload and the producti...

متن کامل

Reactive oxygen species induce neurite degeneration before induction of cell death

Reactive oxygen species (ROS) induce neuronal cell death in a time- and concentration-dependent manner. Treatment of cultured cells with a low concentration of hydrogen peroxide induces neurite degeneration, but not cell death. Neurites (axons and dendrites) are vulnerable to ROS. Neurite degeneration (shrinkage, accumulation, and fragmentation) has been found in neurodegenerative disorders, su...

متن کامل

O 22: Reactive Oxygen Species and Epilepsy

Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and ...

متن کامل

Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease.

Dysfunctions of Ca2+ homeostasis and of mitochondria have been studied in immortalized striatal cells from a commonly used Huntington disease mouse model. Transcriptional changes in the components of the phosphatidylinositol cycle and in the receptors for myo-inositol trisphosphate-linked agonists have been found in the cells and in the striatum of the parent Huntington disease mouse. The overa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 12  شماره 

صفحات  -

تاریخ انتشار 1997