Replication of UV-irradiated single-stranded DNA by DNA polymerase III holoenzyme of Escherichia coli: evidence for bypass of pyrimidine photodimers.
نویسنده
چکیده
Replication of UV-irradiated circular single-stranded phage M13 DNA by Escherichia coli RNA polymerase (EC 2.7.7.6) and DNA polymerase III holoenzyme (EC 2.7.7.7) in the presence of single-stranded DNA binding protein yielded full-length as well as partially replicated products. A similar result was obtained with phage G4 DNA primed with E. coli DNA primase, and phage phi X174 DNA primed with a synthetic oligonucleotide. The fraction of full-length DNA was several orders of magnitude higher than predicted if pyrimidine photodimers were to constitute absolute blocks to DNA replication. Recent models have suggested that pyrimidine photodimers are absolute blocks to DNA replication and that SOS-induced proteins are required to allow their bypass. Our results demonstrate that, under in vitro replication conditions, E. coli DNA polymerase III holoenzyme can insert nucleotides opposite pyrimidine dimers to a significant extent, even in the absence of SOS-induced proteins.
منابع مشابه
Bypass and termination at apurinic sites during replication of single-stranded DNA in vitro: a model for apurinic site mutagenesis.
Mutations produced in Escherichia coli by apurinic sites are believed to arise via SOS-assisted translesion replication. Analysis of replication products synthesized on depurinated single-stranded DNA by DNA polymerase III holoenzyme revealed that apurinic sites frequently blocked in vitro replication. Bypass frequency of an apurinic site was estimated to be 10-15%. Direct evidence for replicat...
متن کاملMechanism of ultraviolet-induced mutagenesis: extent and fidelity of in vitro DNA synthesis on irradiated templates.
The effect of UV irradiation on the extent and fidelity of DNA synthesis in vitro was studied by using homopolymers and primed single-stranded varphiX174 phage DNA as substrates. Unfractionated and fractionated cell-free extracts from Escherichia coli pol(+) and polA1 mutants as well as purified DNA polymerase I were used as sources of enzymatic activity. (DNA polymerases, as used here, refer t...
متن کاملThe Escherichia coli preprimosome and DNA B helicase can form replication forks that move at the same rate.
A DNA replication system was developed that could generate rolling-circle DNA molecules in vitro in amounts that permitted kinetic analyses of the movement of the replication forks. Two artificial primer-template DNA substrates were used to study DNA synthesis catalyzed by the DNA polymerase III holoenzyme in the presence of either the preprimosomal proteins (the primosomal proteins minus the D...
متن کاملCopy-choice recombination mediated by DNA polymerase III holoenzyme from Escherichia coli.
Formation of deletions by recombination between short direct repeats is thought to involve either a break-join or a copy-choice process. The key step of the latter is slippage of the replication machinery between the repeats. We report that the main replicase of Escherichia coli, DNA polymerase III holoenzyme, slips between two direct repeats of 27 bp that flank an inverted repeat of approximat...
متن کاملDynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template.
Movements of DNA polymerase III holoenzyme (holoenzyme) in replicating a template multiprimed with synthetic pentadecadeoxynucleotides (15-mers) annealed at known positions on a single-stranded circular or linear DNA have been analyzed. After extension of one 15-mer on a multiprimed template, holoenzyme moves downstream in the direction of chain elongation to the next primer. Holoenzyme readily...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 83 13 شماره
صفحات -
تاریخ انتشار 1986