Methemoglobin formation by hydroxylamine metabolites of sulfamethoxazole and dapsone: implications for differences in adverse drug reactions.

نویسندگان

  • T P Reilly
  • P M Woster
  • C K Svensson
چکیده

Differences in the incidence of adverse drug reactions to trimethoprim-sulfamethoxazole and dapsone may result from differences in the formation, disposition, toxicity, and/or detoxification of their hydroxylamine metabolites. In this study, we examine whether differences in the biochemical processing of sulfamethoxazole hydroxylamine (SMX-NOH) and dapsone hydroxylamine (DDS-NOH) by erythrocytes [red blood cells (RBCs)] contribute to this differential incidence. The methemoglobin (MetHgb)-forming capacity of both metabolites was compared after a 60-min incubation with washed RBCs from four healthy human volunteers. DDS-NOH was significantly more potent (P =.004) but equally efficacious with SMX-NOH in its ability to form MetHgb. The elimination of potential differences in disposition by lysing RBCs did not change the MetHgb-forming potency of either hydroxylamine. At pharmacologically relevant concentrations, greater reduction to the parent amine occurred with DDS-NOH. Maintenance of MetHgb-forming potency was dependent on recycling with glutathione, but no difference in cycling efficiency was observed between DDS-NOH and SMX-NOH. In contrast, the pharmacodynamics of hydroxylamine-induced MetHgb formation were not changed by pretreatment with the glucose 6-phosphate dehydrogenase inhibitor epiandrosterone or by compounds that alter normal antioxidant enzyme activity. Methylene blue, which stimulates NADPH-dependent MetHgb reductase activity, decreased MetHgb levels but did not alter the differential potency of these hydroxylamines. DDS-NOH was also significantly more potent when incubated with purified human hemoglobin A0. Collectively, these data suggest that the inherently greater reactivity of DDS-NOH with hemoglobin, the greater conversion of DDS-NOH to its parent amine, and potential differences in disposition of hydroxylamine metabolites may contribute to the preferential development of dapsone-induced hemotoxicity and sulfamethoxazole-induced hypersensitivity reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation and uptake of arylhydroxylamine-haptenated proteins in human dendritic cells.

Bioactivation of sulfonamides and the subsequent formation of haptenated proteins is believed to be a critical step in the development of hypersensitivity reactions to these drugs. Numerous lines of evidence suggest that the presence of such adducts in dendritic cells (DCs) migrating to draining lymph nodes is essential for the development of cutaneous reactions to xenobiotics. Our objective wa...

متن کامل

In Vitro Protective Effect and Antioxidant Mechanism of Resveratrol Induced by Dapsone Hydroxylamine in Human Cells

Dapsone (DDS) hydroxylamine metabolites cause oxidative stress- linked adverse effects in patients, such as methemoglobin formation and DNA damage. This study evaluated the ameliorating effect of the antioxidant resveratrol (RSV) on DDS hydroxylamine (DDS-NHOH) mediated toxicity in vitro using human erythrocytes and lymphocytes. The antioxidant mechanism was also studied using in-silico methods...

متن کامل

Comparison of the metabolism and toxicity of dapsone in rat, mouse and man.

The metabolism and toxicity of dapsone was compared in vitro and in vivo in rat, mouse and man. Metabolism was assessed by high-pressure liquid chromatography-mass spectrometry and methemoglobin formation has been used as a toxic endpoint. The greatest toxicity in vitro was seen in microsomes prepared from male Wistar rats (36.6 +/- 1.5% methemoglobin), although toxicity was also seen in micros...

متن کامل

Characterization of the formation and localization of sulfamethoxazole and dapsone-associated drug-protein adducts in human epidermal keratinocytes.

Sulfonamide- and sulfone-induced hypersensitivity reactions are thought to be mediated through bioactivation of parent drug molecule(s) to their respective reactive metabolite(s). Recent studies have demonstrated that keratinocytes can bioactivate sulfonamides and sulfones. Using enzyme-linked immunosorbent assay and hapten-specific rabbit antisera developed in our laboratory, we found that inc...

متن کامل

Is hydroxylamine-induced cytotoxicity a valid marker for hypersensitivity reactions to sulfamethoxazole in human immunodeficiency virus-infected individuals?

Hypersensitivity (HS) reactions to sulfonamides and sulfones continue to limit their use in human immunodeficiency virus (HIV)-infected individuals. In vitro cytotoxicity of hydroxylamine metabolites toward peripheral blood mononuclear cells (PBMCs) has been proposed as a marker for these HS reactions. To test the validity of this in vitro system, we determined the selective susceptibility of P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 288 3  شماره 

صفحات  -

تاریخ انتشار 1999