Xrcc3 induces cisplatin resistance by stimulation of Rad51-related recombinational repair, S-phase checkpoint activation, and reduced apoptosis.
نویسندگان
چکیده
Eukaryotic cells respond to DNA damage by activation of DNA repair, cell cycle arrest, and apoptosis. Several reports suggest that such responses may be coordinated by communication between damage repair proteins and proteins signaling other cellular responses. The Rad51-guided homologous recombination repair system plays an important role in the recognition and repair of DNA interstrand crosslinks (ICLs), and cells deficient in this repair pathway become hypersensitive to ICL-inducing agents such as cisplatin and melphalan. We investigated the possible role of the Rad51-paralog protein Xrcc3 in drug resistance. Xrcc3 overexpression in MCF-7 cells resulted in 1) a 2- to 6-fold resistance to cisplatin/melphalan, 2) a 2-fold increase in drug-induced Rad51 foci, 3) an increased cisplatin-induced S-phase arrest, 4) decreased cisplatin-induced apoptosis, and 5) increased cisplatin-induced DNA synthesis arrest. Interestingly, Xrcc3 overexpression did not alter the doubling time or cell cycle progression in the absence of DNA damage. Furthermore, Xrcc3 overexpression is associated with increased Rad51C protein levels consistent with the known interaction of these two proteins. Our results demonstrate that Xrcc3 is an important factor in DNA cross-linking drug resistance in human tumor cells and suggest that the response of the homologous recombinational repair machinery and cell cycle checkpoints to DNA cross-linking agents is intertwined.
منابع مشابه
In vitro evidence for homologous recombinational repair in resistance to melphalan.
BACKGROUND The generation of DNA interstrand cross-links is thought to be important in the cytotoxicity of nitrogen mustard alkylating agents, such as melphalan, which have antitumor activity. Cell lines with mutations in recombinational repair pathways are hypersensitive to nitrogen mustards. Thus, resistance to melphalan may require accelerated DNA repair by either recombinational repair mech...
متن کاملReduced apoptotic response to camptothecin in CHO cells deficient in XRCC3.
Eukaryotic cells respond to DNA damage by activation of DNA repair, cell-cycle arrest and apoptosis. Several reports suggest that such responses may be coordinated by communication between damage repair proteins and proteins signalling other cellular responses. The Rad51-guided homologous recombination (HR) repair plays an important role in recognition and repair of DNA double-strand breaks (DS...
متن کاملHuman Rad51C deficiency destabilizes XRCC3, impairs recombination, and radiosensitizes S/G2-phase cells.
The highly conserved Rad51 protein plays an essential role in repairing DNA damage through homologous recombination. In vertebrates, five Rad51 paralogs (Rad51B, Rad51C, Rad51D, XRCC2, and XRCC3) are expressed in mitotically growing cells and are thought to play mediating roles in homologous recombination, although their precise functions remain unclear. Among the five paralogs, Rad51C was foun...
متن کاملXRCC3 is a promising target to improve the radiotherapy effect of esophageal squamous cell carcinoma
Radiotherapy is widely applied for treatment of esophageal squamous cell carcinoma (ESCC). The Rad51-related protein XRCC3 plays roles in the recombinational repair of DNA double-strand breaks to maintain chromosome stability and repair DNA damage. The present study aimed to investigate the effect of XRCC3 on the radiotherapy response of ESCC and the underlying mechanisms of the roles of XRCC3 ...
متن کاملInteractions involving the Rad51 paralogs Rad51C and XRCC3 in human cells.
Homologous recombinational repair of DNA double-strand breaks and crosslinks in human cells is likely to require Rad51 and the five Rad51 paralogs (XRCC2, XRCC3, Rad51B/Rad51L1, Rad51C/Rad51L2 and Rad51D/Rad51L3), as has been shown in chicken and rodent cells. Previously, we reported on the interactions among these proteins using baculovirus and two- and three-hybrid yeast systems. To test for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 314 2 شماره
صفحات -
تاریخ انتشار 2005