Quantifier Elimination for Neocompact Sets

نویسنده

  • H. Jerome Keisler
چکیده

We shall prove quantifier elimination theorems for neocompact formulas, which define neocompact sets and are built from atomic formulas using finite disjunctions, infinite conjunctions, existential quantifiers, and bounded universal quantifiers. The neocompact sets were first introduced to provide an easy alternative to nonstandard methods of proving existence theorems in probability theory, where they behave like compact sets. The quantifier elimination theorems in this paper can be applied in a general setting to show that the family of neocompact sets is countably compact. To provide the necessary setting we introduce the notion of a law structure. This notion was motivated by the probability law of a random variable. However, in this paper we discuss a variety of model theoretic examples of the notion in the light of our quantifier elimination results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifier elimination for the theory of algebraically closed valued fields with analytic structure

The theory of algebraically closed non-Archimedean valued fields is proved to eliminate quantifiers in an analytic language similar to the one used by Cluckers, Lipshitz and Robinson. The proof makes use of a uniform parameterized normalization theorem which is also proved in this paper and which has far reaching consequences in the geometry of definable sets. This method of proving quantifier ...

متن کامل

A Quantifier Elimination Algorithm for a Fragment of Set Theory Involving the Cardinality Operator

We present a decision procedure based on quantifier elimination for a fragment of set theory involving elements, integers, and finite sets of elements in the presence of the cardinality operator. The language allows quantification on element variables and integer variables, but not on set variables. We also show that if we identify the sort of elements with the sort of integers, thus considerin...

متن کامل

Quantifier-Elimination for the First-Order Theory of Boolean Algebras with Linear Cardinality Constraints

We present for the first-order theory of atomic Boolean algebras of sets with linear cardinality constraints a quantifier elimination algorithm. In the case of atomic Boolean algebras of sets, this is a new generalization of Boole’s well-known variable elimination method for conjunctions of Boolean equality constraints. We also explain the connection of this new logical result with the evaluati...

متن کامل

Adapting Real Quantifier Elimination Methods for Conflict Set Computation

The satisfiability problem in real closed fields is decidable. In the context of satisfiability modulo theories, the problem restricted to conjunctive sets of literals, that is, sets of polynomial constraints, is of particular importance. One of the central problems is the computation of good explanations of the unsatisfiability of such sets, i.e. obtaining a small subset of the input constrain...

متن کامل

Counter-examples to quantifier elimination for fewnomial and exponential expressions

We construct a family of semialgebraic sets of bounded fewnomial complexity, with unbounded fewnomial complexity of their projections to a subspace. This implies impossibility of fewnomial quantifier elimination. We also construct a set defined by exponential algebraic functions such that its projection cannot be defined by a quantifierfree formula with exponential algebraic functions, even if ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 63  شماره 

صفحات  -

تاریخ انتشار 1998