STAT3 regulates glycolysis via targeting hexokinase 2 in hepatocellular carcinoma cells
نویسندگان
چکیده
Signal transducer and activator of transcription 3 (STAT3) and hexokinase 2 (HK2) are involved in hepatocellular carcinoma (HCC). Deregulation of cellular energetics involving an increase in glycolysis is a characteristic of HCC. This study examined whether STAT3 regulates HCC glycolysis through the HK2 pathway in HCC cells. Human HCC cell lines HepG2 and Hep3B cells were transfected with pcDNA3.1(+)-EGFP-STAT3, STAT3 siRNA and HK2 siRNA, respectively, or treated with rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), and the effects on STAT3 and HK2 expression and cell glycolysis were determined. STAT3 and HK2 expressions were evaluated by real-time polymerase chain reaction and Western blotting. The level of glycolysis metabolism was assessed by the determination of glucose consumption and lactate production.The results showed that transfection of HepG2 and Hep3B cells with pcDNA3.1(+)-EGFP-STAT3 significantly increased STAT3 mRNA and protein expression, glucose consumption and lactate production, and HK2 mRNA and protein expression. However, transfection of HepG2 and Hep3B cells with STAT3 siRNA significantly decreased glucose consumption and lactate production and HK2 mRNA and protein expression. Transfection of HepG2 and Hep3B cells with HK2 siRNA significantly decreased glucose consumption and lactate production. Treatment of HepG2 and Hep3B cells with rapamycin significantly reduced HK2 mRNA and protein expression and glucose consumption and lactate production. These results suggest that mTOR-STAT3-HK2 pathway is involved in the glycolysis of HCC cells and STAT3 may regulate HCC glycolysis through HK2 pathway, providing potential multiple therapeutic targets through intervention of glycolysis for the treatment of HCC.
منابع مشابه
Interleukin-22 promotes aerobic glycolysis associated with tumor progression via targeting hexokinase-2 in human colon cancer cells
Interleukin-22 has been explored extensively in human cancer, but its functions and underlying mechanisms are incompletely understood. Here, we show that aberrant interleukin-22 expression facilitates aerobic glycolysis in colon cancer cells. Elevated interleukin-22 mRNA expression was observed and positively correlated with hexokinase-2 in colon cancer tissues. In vitro, interleukin-22 enhance...
متن کاملA novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells.
Cancer cells preferentially metabolize glucose through aerobic glycolysis. This phenomenon, known as the Warburg effect, is an anomalous characteristic of glucose metabolism in cancer cells. Chronic inflammation is a key promoting factor of tumourigenesis. It remains, however, largely unexplored whether and how pro-tumourigenic inflammation regulates glucose metabolism in cancer cells. Here, we...
متن کاملOverexpression of microRNA-125b sensitizes human hepatocellular carcinoma cells to 5-fluorouracil through inhibition of glycolysis by targeting hexokinase II.
5-fluorouracil (5-FU)-based chemotherapy is widely used in the treatment of human hepatocellular carcinoma. However, despite impressive initial clinical responses, the majority of patients eventually develop resistance to 5-FU. The microRNA (miR)-125 family has been implicated in a variety of carcinomas as either a tumor suppressor or promoter. In the present study, the role of miR-125b in acqu...
متن کاملLong non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase 2 through the mTOR–STAT3/microRNA143 pathway
Cancer cells preferentially metabolize glucose through aerobic glycolysis, a phenomenon known as the Warburg effect. Emerging evidence has shown that long non-coding RNAs (lncRNAs) act as key regulators of multiple cancers. However, it remains largely unexplored whether and how lncRNA regulates glucose metabolism in cancer cells. In this study, we show that lncRNA UCA1 promotes glycolysis in bl...
متن کاملGinsenoside 20(S)‑Rg3 inhibits the Warburg effect through STAT3 pathways in ovarian cancer cells.
Cancer cells prefer to metabolize glucose through aerobic glycolysis, known as the Warburg effect. It plays a crucial role in proliferation and progression of cancer cells. However, the complete mechanism remains elusive. In recent studies, the signal transducer and activator of transcription 3 (STAT3) signaling has been discovered to have roles in cancer‑associated changes in metabolism. In th...
متن کامل