On MHD waves, fire-hose and mirror instabilities in anisotropic plasmas

نویسندگان

  • L. - N. Hau
  • B. - J. Wang
چکیده

Temperature or pressure anisotropies are characteristic of space plasmas, standard magnetohydrodynamic (MHD) model for describing large-scale plasma phenomena however usually assumes isotropic pressure. In this paper we examine the characteristics of MHD waves, fire-hose and mirror instabilities in anisotropic homogeneous magnetized plasmas. The model equations are a set of gyrotropic MHD equations closed by the generalized Chew-Goldberger-Low (CGL) laws with two polytropic exponents representing various thermodynamic conditions. Both ions and electrons are allowed to have separate plasma beta, pressure anisotropy and energy equations. The properties of linear MHD waves and instability criteria are examined and numerical examples for the nonlinear evolutions of slow waves, fire-hose and mirror instabilities are shown. One significant result is that slow waves may develop not only mirror instability but also a new type of compressible fire-hose instability. Their corresponding nonlinear structures thus may exhibit anticorrelated density and magnetic field perturbations, a property used for identifying slow and mirror mode structures in the space plasma environment. The conditions for nonlinear saturation of both fire-hose and mirror instabilities are examined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetohydrodynamic Waves and Instabilities in Homogeneous Gyrotropic Ultrarelativistic Plasma

In some astrophysical systems the ionized gas may be of such high temperature and so strongly magnetized that relativistic effects and pressure anisotropy must be considered in the magnetohydrodynamic (MHD) model. This paper gives an overview of the characteristics of linear MHD waves and instabilities in homogeneous ultrarelativistic plasmas with gyrotropic pressure. The energy closure is the ...

متن کامل

Mirror and firehose instabilities in the heliosheath

We investigate the nature of the heliosheath plasma behind the Termination Shock across which jump relations in anisotropic MHD are formulated. Along side analytical results for downstream parameters in the strictly parallel and perpendicular cases we numerically solve the Rankine-Hugoniot relations for arbitrary shock angle and strength. We then focus on two temperature anisotropy driven insta...

متن کامل

Hellinger and Matsumoto : Oblique Alfvén Fire Hose a 5 - 10 , 521

Two instabilities could take place in plasma with a bi-Maxwellian proton distribution function with Tp‖ > Tp⊥, where Tp‖ and Tp⊥ are proton temperatures, parallel and perpendicular, respectively, to the background magnetic field. The first instability is the fire hose (or whistler fire hose), generating low-frequency whistler waves at parallel propagation. We found a new, second instability, th...

متن کامل

Temperature Anisotropy in a Shocked Plasma: Mirror-mode Instabilities in the Heliosheath

We show that temperature anisotropies induced at a shock can account for interplanetary and planetary bow shock observations. Shocked plasma with enhanced plasma b is preferentially unstable to the mirror-mode instability downstream of a quasi-perpendicular shock and to the fire-hose instability downstream of a quasiparallel shock, consistent with magnetic fluctuations observed downstream of a ...

متن کامل

Nonlinear competition between the whistler and Alfvén fire hoses

We examine a competition between the whistler and Alfvén fire hoses driven by bi-Maxwellian protons with Tp‖ > Tp⊥, where Tp‖ and Tp⊥ are proton temperatures, parallel and perpendicular to the background magnetic field, respectively. We extend the work of Hellinger and Matsumoto [2000] using a two-dimensional hybrid simulation that includes both the instabilities. In the simulation the whistler...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008