Dynamic phantom with heart, lung, and blood motion for initial validation of MRI techniques.
نویسندگان
چکیده
PURPOSE To develop an anthropomorphic phantom to simulate heart, lung, and blood motion. Magnetic resonance imaging (MRI) is sensitive to image distortion and artifacts caused by motion. Imaging phantoms are used to test new sequences, but generally, these phantoms lack physiological motion. For the validation of new MR-based endovascular interventional and other techniques, we developed a dynamic motion phantom that is suitable for initial in vitro and more realistic validation studies that should occur before animal experiments. MATERIALS AND METHODS An anthropomorphic phantom was constructed to model the thoracic cavity, including respiratory and cardiac motions, and moving blood. Several MRI methods were used to validate the phantom performance: anatomical scanning, rapid temporal imaging, digital subtraction angiography, and endovascular tracking. The quality and nature of the motion artifact in these images were compared with in vivo images. RESULTS The closed-loop motion phantom correctly represented key features in the thorax, was MR-compatible, and was able to reproduce similar motion artifacts and effects as seen in in vivo images. The phantom provided enough physiological realism that it was able to ensure a suitable challenge in an in vitro catheter tracking experiment. CONCLUSION A phantom was created and used for testing interventional catheter guiding. The images produced had similar qualities to those found in vivo. This phantom had a high degree of appropriate anthropomorphic and physiological qualities. Ethically, use of this phantom is highly appropriate when first testing new MRI techniques prior to conducting animal studies.
منابع مشابه
Design and Fabrication of a Four-Dimensional Respiratory Phantom for Studying Tumor Movement in Radiotherapy with Magnetic Resonance Imaging
Introduction: In radiation therapy, determining the location of the tumor accurately during irradiation is one of the most important requirements. However, lung tumors are not fixed in a single location and move during irradiation due to respiratory motion. Due to limitations in assessing such movements, using a lung phantom can be useful and operational for their fast, easy an...
متن کاملImpact of PET - CT motion correction in minimising the gross tumour volume in non-small cell lung cancer
AbstractObjective: To investigate the impact of respiratory motion on localization, and quantification lung lesions for the Gross Tumour Volume utilizing an in-house developed Auto3Dreg programme and dynamic NURBS-based cardiac-torso digitised phantom (NCAT). Methods: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumour lesions. The m...
متن کاملTU-AB-BRA-06: BEST IN PHYSICS (JOINT IMAGING-THERAPY): An MRI Compatible Externally and Internally Deformable Lung Motion Phantom for Multi-Modality IGRT.
PURPOSE MRI has become an attractive tool for tumor motion management. Current MR-compatible phantoms are only capable of reproducing translational motion. This study describes the construction and validation of a more realistic, MRI-compatible lung phantom that is deformable internally as well as externally. We demonstrate a radiotherapy application of this phantom by validating the geometric ...
متن کاملA synthetic data set for validation of tracer kinetic modelling and model-driven registration in DCE-MRI
G. A. Buonaccorsi, G. J. Parker Imaging science and Biomedical Engineering, University of Manchester, Manchester, Manchester, United Kingdom Introduction In clinical quantitative dynamic contrast enhanced MRI (DCE-MRI), it is difficult to verify the accuracy of estimates of kinetic model parameters such as K, ve and vp, as we do not know the ‘true’ parameter values (ground truth). The problem i...
متن کاملValidation of Fast Dynamic SPAMM Tagged MRI Based Measurement of Non-linear 3D Soft Tissue Deformation
Introduction: The MRI based measurement of dynamic 3D deformation of soft tissue in-vivo is relevant to many areas of research such as cardiac biomechanics, the assessment of tumor motion and preoperative planning. Furthermore, when combined with inverse analysis, it enables the non-invasive determination of the mechanical properties of human soft tissue [1]. The current study uses SPAtial Modu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of magnetic resonance imaging : JMRI
دوره 34 4 شماره
صفحات -
تاریخ انتشار 2011