Dsmc Solution of Supersonic Scale to Choked Subsonic Flow in Micro to Nano Channels

نویسندگان

  • Ehsan Roohi
  • Masoud Darbandi
  • Vahid Mirjalili
چکیده

In this study, the supersonic and choked subsonic flows through micro/nano channels are investigated using direct simulation Monte Carlo (DSMC) method. The supersonic case is simulated at different Knudsen numbers covering slip to transition flow regimes, while the effects of inlet Mach and back pressure are studied in details. The inlet/outlet pressure boundary conditions are suitably implemented benefiting from the basics of characteristics theory. A behavior similar to the one predicted by the Fanno theory is observed here; i.e., the supersonic flow velocity decelerates up to a choking condition where any further increase in Knudsen number is impossible unless strong normal/oblique shocks appear at the inlet and the inlet conditions change to the subsonic ones. However, a subsonic flow appears near the outlet section if one imposes a back pressure lower than the ordinary exit pressure at the outlet. Our investigation showed that applying the back pressure boundary condition right at the real channel exit would overwhelm the solution. A more realistic behavior can be achieved by inserting suitable buffer zone beyond the real channel exit, where the back pressure is applied there. This strategy results in capturing a more realistic physics of flow at the channel outlet and enforces choking condition at the outlet.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an Upwind Algorithm at Subsonic Regions in the Solution of PNS Equations

In this paper an upwind algorithm based on Roe’s scheme is presented for solution of PNS equations. Non iterative-implicit method using finite volume technique is used. The main advantage of this approach, in comparison with similar upwind methods, is reduction of oscillations around sonic line. This advantage causes the present method to be able to analyze supersonic flows with free stream Mac...

متن کامل

Development of an Upwind Algorithm at Subsonic Regions in the Solution of PNS Equations

In this paper an upwind algorithm based on Roe’s scheme is presented for solution of PNS equations. Non iterative-implicit method using finite volume technique is used. The main advantage of this approach, in comparison with similar upwind methods, is reduction of oscillations around sonic line. This advantage causes the present method to be able to analyze supersonic flows with free stream Mac...

متن کامل

Efficient DSMC Modeling Techniques for Micro/Nano Gas Flows

Gas flows encountered in micro/nano scale devices are often low speed and non-continuum. The Direct Simulation Monte Carlo (DSMC), a popular molecular based simulation technique for rarefied gas, has proven to be inefficient in dealing with low-speed gas flows. In this paper, we present the Octant Flux Splitting Information Preserving DSMC (OSIP-DSMC) method as an efficient DSMC method for micr...

متن کامل

Development of an Information Preservation Method for Subsonic, Micro-Scale Gas Flows

The development of an information preservation (IP) method is described in this paper. This effort is aimed at increasing our understanding of rarefied gas behavior of subsonic, micro-scale gas flows. The IP method preserves macroscopic information of the flow in the simulated particles. It applies conservation laws for binary collisions of the particles following the movement in the DSMC metho...

متن کامل

Gas Mixing Simulation in a T-Shape Micro Channel Using The DSMC Method

Gas mixing in a T-shape micro mixer has been simulated using the Direct Simulation Monte Carlo (DSMC) method. It is considered that the adequate mixing occurs when the mass composition of the species, CO or N2, deviates below 1 % from their equilibrium composition. The mixing coefficient is defined as the ratio of the mixing length to the main channel’s height. As the inlet Kn increases, while ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008