High Throughput LFSR Design for BCH Encoder using Sample Period Reduction Technique for MLC NAND based Flash Memories
نویسندگان
چکیده
Error correction is one of the important technique for detecting and correcting errors in communication channels, memories etc. , Errors are associated with all types of memories. But the NAND FLASH memories are competing in the market due to its low power, high density, cost effectiveness and design scalability. As far as the memory is concerned the testing should not consume more time. So, some DSP algorithms are used to overcome the delays by increasing the sampling rate. BCH codes are widely been used for error detection and correction. The generated check bits of the BCH encoder are appended with the message bits to form a codeword. This codeword is sent to the receiver to detect any error during the transmission. One of the main components of BCH encoder is LFSR (Linear Feedback Shift Register). LFSR find its wider application in Built-in-Self-Test, signature analyzer etc. , whereas
منابع مشابه
High Throughput LFSR Design for BCH Encoder using Sample Period Reduction Technique for MLC NAND based Flash Memories
Error correction is one of the important technique for detecting and correcting errors in communication channels, memories etc., Errors are associated with all types of memories. But the NAND FLASH memories are competing in the market due to its low power, high density, cost effectiveness and design scalability. As far as the memory is concerned the testing should not consume more time. So, som...
متن کاملReliable MLC NAND Flash Memoris Based on Nonlinear t-Error-Correcting Codes
Multi-level cell (MLC) NAND flash memories are very popular storage media because of their power efficiency and big storage capacity. This paper proposes to use nonlinear t-error-correcting codes to replace linear BCH codes for error detection and correction in MLC NAND flash memories. Compared to linear BCH codes with the same bit-error correcting capability t, the proposed codes have the adva...
متن کاملSecure NAND Flash Architecture Resilient to Strong Fault-Injection Attacks Using Algebraic Manipulation Detection Code
Multi-level cell (MLC) NAND flash memories are widely used because of their high data transfer rate, large storage density and long mechanical durability. Linear error correcting codes (ECC) such as Reed-Solomon (RS) codes and Bose-Chaudhuri-Hocquenghem (BCH) codes are often used for error correction. Although linear codes can efficiently detect and correct random errors, they are not sufficien...
متن کاملImproved NAND Flash Memories Storage Reliablity Using Nonlinear Multi Error Correction Codes
Multi-level cell (MLC) NAND flash memories are popular storage media because of their power efficiency and large storage density. Conventional reliable MLC NAND flash memories based on BCH codes or Reed-Solomon (RS) codes have a large number of undetectable and miscorrected errors. Moreover, standard decoders for BCH and RS codes cannot be easily modified to correct errors beyond their error co...
متن کاملDesign and Implementation of FPGA System to Reduce Reed- Solomon Errors
The data reliability has become an important issue in most communication and storage systems for high speed operation and mass data process. Various error correction code are provided for improving data reliability. A Reed-Solomon code is quite suitable for burst errors, but in case of random errors, it has some difficulty. For MLC NAND flash memories, BoseChaudhuriHocquenghem (BCH) codes are f...
متن کامل