Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly
نویسندگان
چکیده
Configuration (x-)space renormalization of euclidean Feynman amplitudes in a massless quantum field theory is reduced to the study of local extensions of associate homogeneous distributions. Primitively divergent graphs are renormalized, in particular, by subtracting the residue of an analytically regularized expression. Examples are given of computing residues that involve zeta values. The renormalized Green functions are again associate homogeneous distributions of the same degree that transform under indecomposable representations of the dilation group. Invited lecture by I. Todorov at the 9. International Workshop Lie Theory and Its Applications in Physics (LT-9), Varna, Bulgaria, June 2011, and at the International Workshop ”Supersymmetries and Quantum Symmetries” (SQS’2011), Dubna, Russia, July 2011. ha l-0 07 03 70 9, v er si on 1 4 Ju n 20 12
منابع مشابه
Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly1
Configuration (x-)space renormalization of euclidean Feynman amplitudes in a massless quantum field theory is reduced to the study of local extensions of associate homogeneous distributions. Primitively divergent graphs are renormalized, in particular, by subtracting the residue of an analytically regularized expression. Examples are given of computing residues that involve zeta values. The ren...
متن کاملTime-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملConformal anomaly from dS / CFT correspondence
In frames of dS/CFT correspondence suggested by Strominger we calculate holographic conformal anomaly for dual euclidean CFT. The holographic renormalization group method is used for this purpose. It is explicitly demonstrated that two-dimensional and four-dimensional conformal anomalies (or corresponding central charges) have the same form as those obtained in AdS/CFT duality. [email protected]...
متن کاملCohomological analysis of the Epstein-Glaser renormalization
A cohomological analysis of the renormalization freedom is performed in the Epstein-Glaser scheme on a flat Euclidean space. We study the deviation from commutativity between the renormalization and the action of all linear partial differential operators. It defines a natural Hochschild 1–cocycle and the renormalization ambiguity exactly corresponds to the cohomological class of this renormaliz...
متن کاملThe Configuration space integral for links and tangles in R 3
The perturbative expression of Chern-Simons theory for links in Euclidean 3-space is a linear combination of integrals on configuration spaces. This has successively been studied by Guadagnini, Martellini and Mintchev, Bar-Natan, Kontsevich, Bott and Taubes, D. Thurston, Altschuler and Freidel, Yang. . .We give a self-contained version of this study with a new choice of compactification, and we...
متن کامل