Substratum cavities affect growth-plasticity, allometry, movement and feeding rates in the sea urchin Strongylocentrotus purpuratus.
نویسندگان
چکیده
We assessed the influence of rock cavities, or pits, on the growth dynamics and behavior of the purple sea urchin, Strongylocentrotus purpuratus. In a paired-designed, laboratory experiment, sea urchins were assigned to sandstone blocks that were either 'Flat' or had a 'Pit' drilled into the center. At the start, both groups were approximately the same shape and size. In just 2 months, the shapes of the tests were significantly different between the two treatments, with the Pit urchins having an increased height:diameter profile. This result demonstrates the plastic nature of the sea urchin test and that, despite its apparent rigidity, it is capable of deforming during growth. In addition, the presence of pits modified behavior and food consumption as well as allometric growth of the test and Aristotle's lantern. Sea urchins on Pit sandstone blocks tended to stay in the cavities and not move about the flat areas, whereas individuals on Flat blocks changed position. Sea urchins in the Pit treatment consumed less food and had relatively larger demipyramids (the 'jaw' ossicle in Aristotle's lantern). These morphological and allometric changes occurred over a short time-period (8-20 weeks). We conclude that microhabitat is an important factor in controlling the behavior and growth dynamics of the bioeroding sea urchin S. purpuratus.
منابع مشابه
Annual reversible plasticity of feeding structures: cyclical changes of jaw allometry in a sea urchin.
A wide variety of organisms show morphologically plastic responses to environmental stressors but in general these changes are not reversible. Though less common, reversible morphological structures are shown by a range of species in response to changes in predators, competitors or food. Theoretical analysis indicates that reversible plasticity increases fitness if organisms are long-lived rela...
متن کاملNew biomarkers of post-settlement growth in the sea urchin Strongylocentrotus purpuratus
Some sea urchins, including the purple sea urchin Strongylocentrotus purpuratus, have been successfully used in aquaculture, but their slow growth and late reproduction are challenging to overcome when developing efficient aquaculture production techniques. S. purpuratus develops via an indirect life history that is characterized by a drastic settlement process at the end of a larval period tha...
متن کاملEffects of five southern California macroalgal diets on consumption, growth, and gonad weight, in the purple sea urchin Strongylocentrotus purpuratus
Consumer growth and reproductive capacity are direct functions of diet. Strongylocentrotid sea urchins, the dominant herbivores in California kelp forests, strongly prefer giant kelp (Macrocystis pyrifera), but are highly catholic in their ability to consume other species. The biomass of Macrocystis fluctuates greatly in space and time, and the extent to which urchins can use alternate species ...
متن کاملCO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay.
Anthropogenic CO(2) emissions are acidifying the world's oceans. A growing body of evidence is showing that ocean acidification impacts growth and developmental rates of marine invertebrates. Here we test the impact of elevated seawater pCO(2) (129 Pa, 1271 μatm) on early development, larval metabolic and feeding rates in a marine model organism, the sea urchin Strongylocentrotus purpuratus. Gr...
متن کاملEvolutionary and experimental change in egg volume, heterochrony of larval body and juvenile rudiment, and evolutionary reversibility in pluteus form.
Heterochronic developmental plasticity of the juvenile rudiment and larval body of sea urchin larvae occurs in response to supply of food. Evolutionary increase in egg size can also be associated with earlier development of the juvenile rudiment. We examined effects of egg volume of feeding larvae on this heterochrony and other changes in larval form. (1) Evolutionary and experimental enlargeme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 213 3 شماره
صفحات -
تاریخ انتشار 2010