Phylogeny of nuclear-encoded plastid-targeted proteins supports an early divergence of glaucophytes within Plantae.
نویسندگان
چکیده
The phylogenetic position of the glaucophyte algae within the eukaryotic supergroup Plantae remains to be unambiguously established. Here, we assembled a multigene data set of conserved nuclear-encoded plastid-targeted proteins of cyanobacterial origin (i.e., through primary endosymbiotic gene transfer) from glaucophyte, red, and green (including land plants) algae to infer the branching order within this supergroup. We find strong support for the early divergence of glaucophytes within the Plantae, corroborating 2 important putatively ancestral characters shared by glaucophyte plastids and the cyanobacterial endosymbiont that gave rise to this organelle: the presence of a peptidoglycan deposition between the 2 organelle membranes and carboxysomes. Both these traits were apparently lost in the common ancestor of red and green algae after the divergence of glaucophytes.
منابع مشابه
Phylogeny of Calvin cycle enzymes supports Plantae monophyly.
Photosynthesis is a critical biochemical process on our planet providing food for most life. The common ancestor of plants and their algal sisters gained photosynthesis through the engulfment and retention of a cyanobacterial primary endosymbiont that evolved into a photosynthetic organelle, the plastid (Bhattacharya et al., 2004). In photosynthetic eukaryotes, the essential series of reactions...
متن کاملMonophyly of Primary Photosynthetic Eukaryotes: Green Plants, Red Algae, and Glaucophytes
Between 1 and 1.5 billion years ago, eukaryotic organisms acquired the ability to convert light into chemical energy through endosymbiosis with a Cyanobacterium (e.g.,). This event gave rise to "primary" plastids, which are present in green plants, red algae, and glaucophytes ("Plantae" sensu Cavalier-Smith). The widely accepted view that primary plastids arose only once implies two predictions...
متن کاملChlamydiae Has Contributed at Least 55 Genes to Plantae with Predominantly Plastid Functions
BACKGROUND The photosynthetic organelle (plastid) originated via primary endosymbiosis in which a phagotrophic protist captured and harnessed a cyanobacterium. The plastid was inherited by the common ancestor of the red, green (including land plants), and glaucophyte algae (together, the Plantae). Despite the critical importance of primary plastid endosymbiosis, its ancient derivation has left ...
متن کاملPlastid-localized amino acid biosynthetic pathways of Plantae are predominantly composed of non-cyanobacterial enzymes
Studies of photosynthetic eukaryotes have revealed that the evolution of plastids from cyanobacteria involved the recruitment of non-cyanobacterial proteins. Our phylogenetic survey of >100 Arabidopsis nuclear-encoded plastid enzymes involved in amino acid biosynthesis identified only 21 unambiguous cyanobacterial-derived proteins. Some of the several non-cyanobacterial plastid enzymes have a s...
متن کاملA ricle Compositional Biases among Synonymous Substitutions Cause Conflict between Gene and Protein Trees for Plastid Origins
Archaeplastida (=Kingdom Plantae) are primary plastid-bearing organisms that evolved via the endosymbiotic association of a heterotrophic eukaryote host cell and a cyanobacterial endosymbiont approximately 1,400 Ma. Here, we present analyses of cyanobacterial and plastid genomes that show strongly conflicting phylogenies based on 75 plastid (or nuclear plastid-targeted) protein-coding genes and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 24 11 شماره
صفحات -
تاریخ انتشار 2007