Multiple Kernel Learning in Fisher Discriminant Analysis for Face Recognition
نویسنده
چکیده
Recent applications and developments based on support vector machines (SVMs) have shown that using multiple kernels instead of a single one can enhance classifier performance. However, there are few reports on performance of the kernel‐based Fisher discriminant analysis (kernel‐based FDA) method with multiple kernels. This paper proposes a multiple kernel construction method for kernel‐based FDA. The constructed kernel is a linear combination of several base kernels with a constraint on their weights. By maximizing the margin maximization criterion (MMC), we present an iterative scheme for weight optimization. The experiments on the FERET and CMU PIE face databases show that, our multiple kernel Fisher discriminant analysis (MKFD) achieves high recognition performance, compared with single‐kernel‐based FDA. The experiments also show that the constructed kernel relaxes parameter selection for kernel‐based FDA to some extent.
منابع مشابه
A new kernel Fisher discriminant algorithm with application to face recognition
Kernel-based methods have been of wide concern in the ,eld of machine learning and neurocomputing. In this paper, a new Kernel Fisher discriminant analysis (KFD) algorithm, called complete KFD (CKFD), is developed. CKFD has two advantages over the existing KFD algorithms. First, its implementation is divided into two phases, i.e., Kernel principal component analysis (KPCA) plus Fisher linear di...
متن کاملComparing Kernel-based Learning Methods for Face Recognition
Principal Component Analysis (PCA) and Fisher Discriminant Analysis (FDA) have been successfully applied to face recognition, and both are based on the second order statistics of the image set. Kernel-based subspace methods try to capture the higher order statistics of the image set and thus may provide better results for recognition purposes. In this paper, we try to compare different algorith...
متن کاملManifold Adaptive Kernel Local Fisher Discriminant Analysis for Face Recognition
To efficiently cope with the high dimensionalities and complex nonlinear variations of face images in face recognition task, a novel manifold adaptive kernel local Fisher discriminant analysis algorithm is proposed in this paper. The core idea of this algorithm is as follows: First, the local manifold structure of the face image is modeled by a nearest neighbor graph. Then, an original input ke...
متن کاملKernel-based Weighted Discriminant Analysis with QR Decomposition and Its Application to Face Recognition
Kernel discriminant analysis (KDA) is a widely used approach in feature extraction problems. However, for high-dimensional multi-class tasks, such as faces recognition, traditional KDA algorithms have a limitation that the Fisher criterion is non-optimal with respect to classification rate. Moreover, they suffer from the small sample size problem. This paper presents two variants of KDA called ...
متن کاملSubspace Learning in Krein Spaces: Complete Kernel Fisher Discriminant Analysis with Indefinite Kernels
Positive definite kernels, such as Gaussian Radial Basis Functions (GRBF), have been widely used in computer vision for designing feature extraction and classification algorithms. In many cases nonpositive definite (npd) kernels and non metric similarity/dissimilarity measures naturally arise (e.g., Hausdorff distance, Kullback Leibler Divergences and Compact Support (CS) Kernels). Hence, there...
متن کامل