Logic Learning in Hopfield Networks

نویسندگان

  • Saratha Sathasivam
  • Wan Ahmad Tajuddin Wan Abdullah
چکیده

Synaptic weights for neurons in logic programming can be calculated either by using Hebbian learning or by Wan Abdullah’s method. In other words, Hebbian learning for governing events corresponding to some respective program clauses is equivalent with learning using Wan Abdullah’s method for the same respective program clauses. In this paper we will evaluate experimentally the equivalence between these two types of learning through computer simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developing Agent Based Modelling for Doing Logic Programming in Hopfield Network

In recent studies on artificial intelligence, logic program occupies a significant position because of its attractive features. Neural networks are dynamic systems in the learning and training phase of their operation and convergence is an essential feature, so it is necessary for the researchers developing the models and their learning algorithms to find a provable criterion for convergence in...

متن کامل

Learning algorithms for fuzzy cognitive maps

Fuzzy Cognitive Maps have been introduced as a combination of Fuzzy logic and Neural Networks. In this paper a new learning rule based on unsupervised Hebbian learning and a new training algorithm based on Hopfield nets are introduced and are compared for the training of Fuzzy Cognitive Maps.

متن کامل

Representation and Learning of Propositional Knowledge in Symmetric Connectionist Networks

The goal of this article is to construct a connectionist inference engine that is capable of representing and learning nonmotonic knowledge. An extended version of propositional calculus is developed and is demonstrated to be useful for nonmonotonic reasoning and for coping with inconsistency that may be a result of noisy, unreliable sources of knowledge. Formulas of the extended calculus (call...

متن کامل

Acceleration Technique for Neuro Symbolic Integration

This paper presents an improved technique for accelerating the process of doing logic programming in discrete Hopfield neural network by integrating fuzzy logic and modifying activation function. Generally Hopfield networks are suitable for solving combinatorial optimization problems and pattern recognition problems. However Hopfield neural networks also face some limitations; one of the major ...

متن کامل

Logic Mining Using Neural Networks

Knowledge could be gained from experts, specialists in the area of interest, or it can be gained by induction from sets of data. Automatic induction of knowledge from data sets, usually stored in large databases, is called data mining. Data mining methods are important in the management of complex systems. There are many technologies available to data mining practitioners, including Artificial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0804.4075  شماره 

صفحات  -

تاریخ انتشار 2008