Symmetric Powers of Galois Modules on Dedekind Schemes

نویسنده

  • Bernhard Köck
چکیده

We prove a certain Riemann-Roch type formula for symmetric powers of Galois modules on Dedekind schemes which, in the number field or function field case, specializes to a formula of Burns and Chinburg for Cassou-Noguès-Taylor operations. Introduction Let G be a finite group and E a number field. Let OE denote the ring of integers in E, Y := Spec(OE), and Cl(OYG) := ker(rank : K0(OEG) → Z) the locally free classgroup associated with E and G. For any k ≥ 1, Cassou-Noguès and Taylor have constructed a certain endomorphism ψ k of Cl(OYG) which, via Fröhlich’s Hom-description of Cl(OYG), is dual to the k-th Adams operation on the classical ring of virtual characters of G (see [CT]). Now, let gcd(k, ord(G)) = 1 and k ∈ N an inverse of k modulo ord(G). In the paper [K 3], we have shown that then the endomorphism ψ k′ is a simply definable symmetric power operation σ . Now, let F/E be a finite tame Galois extension with Galois group G. Let f : X := Spec(OF ) → Y denote the corresponding G-morphism and f∗ the homomorphism f∗ : K0(G,X) → Cl(OYG), [E ] 7→ [f∗(E)]− rank(E) · [OYG], from the Grothendieck group K0(G,X) of all locally free OX-modules with (semilinear) G-action to Cl(OYG). Furthermore, let D denote the different of F/E and ψ k the k-th Adams operation on K0(G,X). The paper [BC] by Burns and Chinburg

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second symmetric powers of chain complexes

We investigate Buchbaum and Eisenbud's construction of the second symmetric power $s_R(X)$ of a chain complex $X$ of modules over a commutative ring $R$. We state and prove a number of results from the folklore of the subject for which we know of no good direct references. We also provide several explicit computations and examples. We use this construction to prove the following vers...

متن کامل

ϕ-ALMOST DEDEKIND RINGS AND $\Phi$-ALMOST DEDEKIND MODULES

The purpose of this paper is to introduce some new classes of rings and modules that are closely related to the classes of almost Dedekind domains and almost Dedekind modules. We introduce the concepts of $\phi$-almost Dedekind rings and $\Phi$-almost Dedekind modules and study some properties of this classes. In this paper we get some equivalent conditions for $\phi$-almost Dedekind rings and ...

متن کامل

On Symmetric Power L-invariants of Iwahori Level Hilbert Modular Forms

We compute the arithmetic L-invariants (of Greenberg–Benois) of twists of symmetric powers of p-adic Galois representations attached to Iwahori level Hilbert modular forms (under some technical conditions). Our method uses the automorphy of symmetric powers and the study of analytic Galois representations on p-adic families of automorphic forms over symplectic and unitary groups. Combining thes...

متن کامل

ALGEBRAS WITH CYCLE-FINITE STRONGLY SIMPLY CONNECTED GALOIS COVERINGS

Let $A$ be a nite dimensional $k-$algebra and $R$ be a locally bounded category such that $R rightarrow R/G = A$ is a Galois covering dened by the action of a torsion-free group of automorphisms of $R$. Following [30], we provide criteria on the convex subcategories of a strongly simply connected category R in order to be a cycle- nite category and describe the module category of $A$. We p...

متن کامل

Galois Theory for Iterative Connections and Nonreduced Galois Groups

This article presents a theory of modules with iterative connection. This theory is a generalisation of the theory of modules with connection in characteristic zero to modules over rings of arbitrary characteristic. We show that these modules with iterative connection (and also the modules with integrable iterative connection) form a Tannakian category, assuming some nice properties for the und...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999