Advanced-multi-step Nonlinear Model Predictive Control
نویسنده
چکیده
Nonlinear Model Predictive Control (NMPC) has gained wide attention through the application of dynamic optimization. However, this approach is susceptible to computational delay, especially if the optimization problem cannot be solved within one sampling time. In this paper we propose an advanced-multi-step NMPC (amsNMPC) method based on nonlinear programming (NLP) and NLP sensitivity. This method includes two approaches: the serial approach and the parallel approach. These two approaches solve the background nonlinear programming (NLP) problem at different frequencies and update manipulated variables within each sampling time using NLP sensitivity. We present a continuous stirred tank reactor (CSTR) example to demonstrate the performance of amsNMPC and analyze the results.
منابع مشابه
Rejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller
This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays. An optimization procedure for a neural MPC algorithm based on this model is then developed. T...
متن کاملA New Fault Tolerant Nonlinear Model Predictive Controller Incorporating an UKF-Based Centralized Measurement Fusion Scheme
A new Fault Tolerant Controller (FTC) has been presented in this research by integrating a Fault Detection and Diagnosis (FDD) mechanism in a nonlinear model predictive controller framework. The proposed FDD utilizes a Multi-Sensor Data Fusion (MSDF) methodology to enhance its reliability and estimation accuracy. An augmented state-vector model is developed to incorporate the occurred senso...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملDecentralized Advanced Model Predictive Controller of Fluidized-Bed for Polymerization Process
The control of fluidized-bed operations processes is still one of the major areas of research due to the complexity of the process and the inherent nonlinearity and varying dynamics involved in its operation. There are varieties of problems in chemical engineering that can be formulated as NonLinear Programming (NLPs). The quality of the developed solution significantly affects the performa...
متن کاملConventional and Predictive Control Algorithms for Controlling Nonlinear Processes Using Multiple-Model Approach
The objective of this work is to formulate and demonstrate the methodology of multi-models for improving the performance of existing advanced control strategies. Multiple models are used to capture the nonlinear process dynamics relating to gain and time constant variations. The multi-model strategy was implemented on several controllers such as Smith-Predictor using PI (Proportional-Integral) ...
متن کامل