Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4).

نویسندگان

  • C M Laemmli
  • J H Leveau
  • A J Zehnder
  • J R van der Meer
چکیده

Within the 5.9-kb DNA region between the tfdR and tfdK genes on the 2,4-dichlorophenoxyacetic acid (2,4-D) catabolic plasmid pJP4 from Ralstonia eutropha JMP134, we identified five open reading frames (ORFs) with significant homology to the genes for chlorocatechol and chlorophenol metabolism (tfdCDEF and tfdB) already present elsewhere on pJP4. The five ORFs were organized and assigned as follows: tfdD(II)C(II)E(II)F(II) and tfdB(II) (in short, the tfd(II) cluster), by analogy to tfdCDEF and tfdB (the tfd(I) cluster). Primer extension analysis of mRNA isolated from 2,4-D-grown R. eutropha JMP134 identified a single transcription start site in front of the first gene of the cluster, tfdD(II), suggesting an operon-like organization for the tfd(II) genes. By expressing each ORF in Escherichia coli, we confirmed that tfdD(II) coded for a chloromuconate cycloisomerase, tfdC(II) coded for a chlorocatechol 1, 2-dioxygenase, tfdE(II) coded for a dienelactone hydrolase, tfdF(II) coded for a maleylacetate reductase, and tfdB(II) coded for a chlorophenol hydroxylase. Dot blot hybridizations of mRNA isolated from R. eutropha JMP134 showed that both tfd(I) and tfd(II) genes are transcribed upon induction with 2,4-D. Thus, the functions encoded by the tfd(II) genes seem to be redundant with respect to those of the tfd(I) cluster. One reason why the tfd(II) genes do not disappear from plasmid pJP4 might be the necessity for keeping the regulatory genes for the 2,4-D pathway expression tfdR and tfdS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic characterization of insertion sequence ISJP4 on plasmid pJP4 from Ralstonia eutropha JMP134.

Directly adjacent to the (tfdT-) tfdCDEF gene cluster for chlorocatechol breakdown on plasmid pJP4 of Ralstonia eutropha (formerly Alcaligenes eutrophus) JMP134, we identified a 0.9-kb DNA element, designated ISJP4, with the typical features of a bacterial insertion sequence. ISJP4 occurs as a single complete copy on plasmid pJP4. About 9 kb away from this copy, in the tfdA-tfdS intergenic regi...

متن کامل

Molecular characterization of a deletion/duplication rearrangement in tfd genes from Ralstonia eutropha JMP134(pJP4) that improves growth on 3-chlorobenzoic acid but abolishes growth on 2,4-dichlorophenoxyacetic acid.

Ralstonia eutropha JMP134(pJP4) is able to grow on minimal media containing the pollutants 3-chlorobenzoate (3-CB) or 2,4-dichlorophenoxyacetate (2,4-D). tfd genes from the 88 kb plasmid pJP4 encode enzymes involved in the degradation of these compounds. During growth of strain JMP134 in liquid medium containing 3-CB, a derivative strain harbouring a approximately 95 kb plasmid was isolated. Th...

متن کامل

Role of tfdC(I)D(I)E(I)F(I) and tfdD(II)C(II)E(II)F(II) gene modules in catabolism of 3-chlorobenzoate by Ralstonia eutropha JMP134(pJP4).

The enzymes chlorocatechol-1,2-dioxygenase, chloromuconate cycloisomerase, dienelactone hydrolase, and maleylacetate reductase allow Ralstonia eutropha JMP134(pJP4) to degrade chlorocatechols formed during growth in 2,4-dichlorophenoxyacetate or 3-chlorobenzoate (3-CB). There are two gene modules located in plasmid pJP4, tfdC(I)D(I)E(I)F(I) (module I) and tfdD(II)C(II)E(II)F(II) (module II), pu...

متن کامل

Novel insights into the interplay between peripheral reactions encoded by xyl genes and the chlorocatechol pathway encoded by tfd genes for the degradation of chlorobenzoates by Ralstonia eutropha JMP134.

Many bacteria can grow on chloroaromatic pollutants because they can transform them into chlorocatechols, which are further degraded by enzymes of a specialized ortho-cleavage pathway. Ralstonia eutropha JMP134 is able to grow on 3-chlorobenzoate by using two pJP4-encoded, ortho-cleavage chlorocatechol degradation gene clusters (tfdC(I)D(I)E(I)F(I) and tfdD(II)C(II)E(II)F(II)). Very little is k...

متن کامل

Chemotaxis of Ralstonia eutropha JMP134(pJP4) to the herbicide 2,4-dichlorophenoxyacetate.

Ralstonia eutropha JMP134(pJP4) and several other species of motile bacteria can degrade the herbicide 2,4-dichlorophenoxyacetate (2,4-D), but it was not known if bacteria could sense and swim towards 2,4-D by the process of chemotaxis. Wild-type R. eutropha cells were chemotactically attracted to 2,4-D in swarm plate assays and qualitative capillary assays. The chemotactic response was induced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 182 15  شماره 

صفحات  -

تاریخ انتشار 2000