Platelet-derived growth factor promotes proliferation of erythropoietic progenitor cells in vitro.
نویسندگان
چکیده
To investigate serum requirements for optimal erythropoiesis in vitro, we studied the response of erythroid progenitor cell proliferation in culture to platelet-derived growth factor (PDGF). Human bone marrow cells cultured with platelet-poor plasma-derived serum (PDS) form fewer erythroid colonies than do cells cultured with human whole blood serum or fetal calf serum (P less than 0.05). Treatment of washed platelets with thrombin releases a low molecular weight (less than 100,000) factor that enhances colony growth. This secreted factor appears to be PDGF, based upon the ability of partially purified and electrophoretically pure PDGF to restore colony-forming capacity of PDS-containing cultures to 70-96% of the level found in control cultures with whole blood serum or fetal calf serum. Enhancement of colony growth by PDGF was noted only in marrow cultures supplemented with erythropoietin and PDS. Presence of bioactive erythropoietin in PDGF preparations was excluded by assay in hypertransfused, polycythemic mice, and in fasted rats. Although PDGF stimulates erythroid burst formation in marrow cultures containing optimal concentrations of burst-promoting activity (BPA), it does not influence proliferation of circulating erythroid bursts, regardless of BPA concentration added to culture. We conclude that PDGF is a serum determinant of optimal erythroid progenitor cell proliferation in marrow culture. The activity of PDGF is distinct from that of the apparent erythroid specific growth factors erythropoietin and BPA.
منابع مشابه
Blastema from rabbit ear contains progenitor cells comparable to marrow derived mesenchymal stem cells
Rabbits have the capacity to regenerate holes in their ears by forming a blastema, a tissue that is made up of a group of undifferentiated cells. The purpose of the present study was to isolate and characterize blastema progenitor cells and compare them with marrow mesenchymal stem cells (MSCs). Five New Zealand white male rabbits were used in the present study. A 2-mm hole was created in the a...
متن کاملL-triiodothyronine augments erythropoietic growth factor release from peripheral blood and bone marrow leukocytes.
To investigate cellular mechanisms involved in thyroid hormone stimulation of erythropoiesis, we studied the response of erythroid burst-forming unit (BFU-E) proliferation to L-triiodothyronine (L-T3) in a serum-free culture system. When added directly to culture, L-T3 stimulates erythroid burst formation by normal human bone marrow cells. In contrast, granulocyte-macrophage colony formation is...
متن کاملبررسی تاثیر پروژسترون در بیان ژنهای P0, S100, Krox20 در سلولهای بنیادی برگرفته از بافت چربی در شرایط آزمایشگاهی
Background: Adipose-derived stem cells (ADSCs) have noticeable self-renewal ability and can differentiate into several cell lines such as adipocytes, osteoblasts, chondrocytes, and myocytes. Progesterone plays a significant role in the myelination of peripheral nerves. Regarding the role of progesterone on the myelination of peripheral nervous system, we evaluated its effect...
متن کاملAutocrine/paracrine platelet-derived growth factor regulates proliferation of neural progenitor cells.
Growth factors play an important role in regulating neural stem cell proliferation and differentiation. This study shows that platelet-derived growth factor (PDGF) induces a partial differentiation of neural stem/progenitor cells (NSPCs) in the absence of other mitogens in vitro. NSPCs thus acquire an immature morphology and display markers for both neurons and glia. In addition, these cells do...
متن کاملMatrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells
Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 71 5 شماره
صفحات -
تاریخ انتشار 1983