The Dynamical Evolution of Substructure
نویسندگان
چکیده
The evolution of substructure embedded in non-dissipative dark halos is studied through N-body simulations of isolated systems, both in and out of initial equilibrium, complementing cosmological simulations of the growth of structure. We determine by both analytic calculations and direct analysis of the N-body simulations the relative importance of various dynamical processes acting on the clumps, such as the removal of material by global tides, clump-clump heating, clump-clump merging and dynamical friction. The ratio of the internal clump velocity dispersion to that of the dark halo is an important parameter; as this ratio approaches a value of unity, heating by close encounters between clumps becomes less important while the other dynamical processes continue to increase in importance. Our comparison between merging and disruption processes implies that spiral galaxies cannot be formed in a proto-system that contains a few large clumps, but can be formed through the accretion of many small clumps; elliptical galaxies form in a more clumpy environment than do spiral galaxies. Our results support the idea that the central cusp in the density profiles of dark halos is the consequence of self-limiting merging of small, dense halos. This implies that the collapse of a system of clumps/substructure is not sufficient to form a cD galaxy, with an extended envelope; plausibly subsequent accretion of large galaxies is required. The post-collapse system is in general triaxial, with rounder systems resulting from fewer, but more massive, clumps. E-mail: [email protected] (BZ); [email protected] (RFGW); [email protected] (MS); [email protected] (JS) Also School of Physics & Astronomy, University of St Andrews, North Haugh, KY16 9SS, Scotland
منابع مشابه
Effects of dynamical evolution on the distribution of substructures
We develop a semi-analytical model that determines the evolution of the mass, position and internal structure of dark matter substructures orbiting in dark matter haloes. We apply this model to the case of the Milky Way. We focus in particular on the effects of mass loss, dynamical friction and substructure–substructure interactions, the last of which has previously been ignored in analytic mod...
متن کاملThe morphological and dynamical evolution of simulated galaxy clusters
We explore the morphological and dynamical evolution of galaxy clusters in simulations using scalar and vector-valued Minkowski valuations and the concept of fundamental plane relations. In this context, three questions are of fundamental interest: 1. How does the average cluster morphology depend on the cosmological background model? 2. Is it possible to discriminate between different cosmolog...
متن کاملPareto Optimal Multi-Objective Dynamical Balancing of a Slider-Crank Mechanism Using Differential Evolution Algorithm
The present paper aims to improve the dynamical balancing of a slider-crank mechanism. This mechanism has been widely used in internal combustion engines, especially vehicle engines; hence, its dynamical balancing is important significantly. To have a full balance mechanism, the shaking forces and shaking moment of foundations should be eliminated completely. However, this elimination is usuall...
متن کاملThe dynamical evolution of fractal star clusters: the survival of substructure
We simulate the dynamics of fractal star clusters, in order to investigate the evolution of substructure in recently formed clusters. The velocity dispersion is found to be the key parameter determining the survival of substructure. In clusters with a low initial velocity dispersion, the ensuing collapse of the cluster tends to erase substructure, although some substructure may persist beyond t...
متن کاملDynamical evolution of nonclassical properties in cavity quantum electrodynamics with a single trapped ion
In this paper, by considering a system consisting of a single two-level trapped ion interacting with a single-mode quantized radiation field inside a lossless cavity, the temporal evolution of the ionic and the cavity-field quantum statistical properties including photon-counting statistics, quantum fluctuations of the field quadratures and quantum fluctuations of the ionic dipole variables are...
متن کاملScaling relations in dynamical evolution of star clusters
We have carried out a series of small scale collisional N-body calculations of single-mass star clusters to investigate the dependence of the lifetime of star clusters on their initial parameters. Our models move through an external galaxy potential with a logarithmic density profile and they are limited by a cut-off radius. In order to find scaling relations between the lifetime of star cluste...
متن کامل