Maneuvering Control Algorithm Based on All-wheel Independent Driving and Steering Control for Special Purpose 6WD/6WS Vehicles
نویسنده
چکیده
This paper discusses the maneuvering control algorithm based on all-wheel independent driving and steering control techniques for special purpose 6WD/WS vehicles. The maneuvering control algorithms considering superior dynamic characteristics of high power in-wheel motors and independent steering system are designed to perform driving and steering control, vehicle stability control, and fault tolerant control. The maneuvering controller applies sliding and optimal control theories considering optimal torque distribution and friction circle related to the vertical tire force. The fault tolerant control algorithm is applied to obtain the similar maneuverability to that of the non-faulty vehicle. The simulations using the Matlab/Simulink model and experiments using HIL simulator with the designed control algorithms prove the remarkably improved performances in terms of vehicle stability and maneuverability under the double lane change, slalom, and fishhook test conditions. Key-Words: All-wheel independent control, Fault tolerant control, Friction circle, Maneuvering controller, Vehicle stability control
منابع مشابه
On the maneuvering control of networks of moving vehicles
This paper discusses the maneuvering control algorithm based on all-wheel independent driving and steering control techniques for special purpose 6WD/WS vehicles. The maneuvering control algorithms considering superior dynamic characteristics of high power in-wheel motors and independent steering system are designed to perform driving and steering control, vehicle stability control, and fault t...
متن کاملModeling and Optimal Control of 4 Wheel Steering Vehicle Using LQR and its Comparison with 2 Wheel Steering Vehicle
In this paper, kinetic and kinematic modeling of a 4 wheel steering vehicle is done and its movement is controlled in an optimal way using Linear Quadratic Regulator (LQR). The results are compared with the same control of two-wheel steering case and the advantages are analyzed. In 4 wheel steering vehicles which are nowadays more applicable the number of controlling actuators are more than the...
متن کاملIntegrated Traction Control Strategy for Distributed Drive Electric Vehicles with Improvement of Economy and Longitudinal Driving Stability
This paper presents an integrated traction control strategy (ITCS) for distributed drive electric vehicles. The purpose of the proposed strategy is to improve vehicle economy and longitudinal driving stability. On high adhesion roads, economy optimization algorithm is applied to maximize motors efficiency by means of the optimized torque distribution. On low adhesion roads, a sliding mode contr...
متن کاملThe Optimal Steering Control System using Imperialist Competitive Algorithm on Vehicles with Steer-by-Wire System
Steer-by-wire is the electrical steering systems on vehicles that are expected with the development of an optimal control system can improve the dynamic performance of the vehicle. This paper aims to optimize the control systems, namely Fuzzy Logic Control (FLC) and the Proportional, Integral and Derivative (PID) control on the vehicle steering system using Imperialist Competitive Algorithm (IC...
متن کاملDynamic velocity and yaw-rate control of the 6WD skid-steering mobile robot RobuROC6 using sliding mode technique
A robust dynamic feedback controller is designed and implemented, based on the dynamic model of the six-wheel skid-steering RobuROC6 robot, performing high speed turns. The control inputs are respectively the linear velocity and the yaw angle. The main object of this paper is to elaborate a sliding mode controller, proved to be robust enough to ignore the knowledge of the forces within the whee...
متن کامل