Proton translocation in proteins.

نویسندگان

  • R A Copeland
  • S I Chan
چکیده

The active transport of protons across the low dielectric barrier imposed by biological membranes is accomplished by a plethora of proteins that span the ca. 40 ~ of the phospholipid bilayer. The free energy derived from the proton electrochemical potential established by the translocation of these protons can subsequently be used to drive vital chemical reactions of the cell, such as ATP synthesis and cell locomotion. Membrane-bound proton translocating proteins have now been found for a variety of organisms and tissues (1). The driving force for proton pumping in these proteins is supplied by numerous mechanisms, including light absorption (e.g. bacteriorhodopsin) (2a,b), ligand binding (e.g. ATPase) (3), and electrochemistry (e.g. electron transfer through cytochrome c oxidase) (4). nature has devised a variety of methods for supplying the energy required for proton pumping by these proteins. Such diversity notwithstanding, the proteins most likely share some common elements of structure and mechanism that allow them to function as proton pumps. A number of theoretical mechanisms have been put forth for both general proton translocation (5-7) and for energy coupling in specific proton pumps. However, despite almost three decades of intensive research, the details of the mechanism(s) and structural requirements for proton pumping remain largely unresolved. To some extent this is the result of the paucity of structural information available for integral membrane proteins. This situation may soon improve as a result of advances in protein methodologies

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

prlA suppressors in Escherichia coli relieve the proton electrochemical gradient dependency of translocation of wild-type precursors.

The SecY protein of Escherichia coli is an integral membrane component of the protein export apparatus. Suppressor mutations in the secY gene (prlA alleles) have been isolated that restore the secretion of precursor proteins with defective signal sequences. These mutations have never been shown to affect the translocation of wild-type precursor proteins. Here, we report that prlA suppressor mut...

متن کامل

Localized proton microcircuits at the biological membrane-water interface.

Cellular processes such as nerve conduction, energy metabolism, and import of nutrients into cells all depend on transport of ions across biological membranes through specialized membrane-spanning proteins. Understanding these processes at a molecular level requires mechanistic insights into the interaction between these proteins and the membrane itself. To explore the role of the membrane in i...

متن کامل

Unraveling the mechanism of proton translocation in the extracellular half-channel of bacteriorhodopsin.

Bacteriorhodopsin, a light activated protein that creates a proton gradient in halobacteria, has long served as a simple model of proton pumps. Within bacteriorhodopsin, several key sites undergo protonation changes during the photocycle, moving protons from the higher pH cytoplasm to the lower pH extracellular side. The mechanism underlying the long-range proton translocation between the centr...

متن کامل

Proton transfer limits protein translocation rate by the thylakoid DeltapH/Tat machinery.

The thylakoid transmembrane DeltapH is the sole energy source driving translocation of precursor proteins by the DeltapH/Tat machinery. Consequently, proton translocation must be coupled to precursor translocation. For the precursor of the 17 kDa protein of the oxygen-evolving complex (pOE17), the protein translocation process is characterized by a steep drop in efficiency at an external pH bel...

متن کامل

Solubilization and functional reconstitution of the protein-translocation enzymes of Escherichia coli.

The SecY protein and other membrane proteins of Escherichia coli were solubilized by mixed micelles of n-octyl beta-D-glucopyranoside, phospholipids, and glycerol. Proteoliposomes formed from this extract by detergent dialysis supported energy-dependent translocation and processing of pro-OmpA. Translocation required ATP, SecY, and SecA and was stimulated by a proton-motive force. These results...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annual review of physical chemistry

دوره 40  شماره 

صفحات  -

تاریخ انتشار 1989