Targeting Transforming Growth Factor-Beta1 (TGF-β1) Inhibits Tumorigenesis of Anaplastic Thyroid Carcinoma Cells Through ERK1/2-NF-κB-PUMA Signaling
نویسندگان
چکیده
BACKGROUND The transforming growth factor-beta (TGF-β) signaling pathway plays a critical role in promoting tumor growth. TGF-β1was found to be overexpressed in anaplastic thyroid cancer (ATC). We therefore tested our hypothesis that targeting TGF-β1 inhibits tumorigenesis of ATC cells. MATERIAL AND METHODS Effects of TGF-β1 stimulation or TGF-β1 inhibition by small interfering RNA (TGF-β1siRNA) on proliferation, colony formation, and apoptosis in 8505C cells in vitro was detected using siRNAs and inhibitors to examine the TGF-β1 signaling pathway. A subcutaneously implanted tumor model of 8505C cells in nude mice was used to assess the effects of TGF-β1 inhibition on tumorigenesis development. RESULTS TGF-β1siRNAs decreased proliferation and colony formation, and increased apoptosis in 8505C cells in vitro and inhibited tumor growth in vivo. TGF-β1siRNA inhibited phosphorylation ERK1/2 (pERK1/2) and increased p65-dependant PUMA mRNA and protein expression. Knockdown of p65 or PUMA by siRNA reduced TGF-β1siRNA-induced apoptosis, as well as caspase-3 and PARP activation. Upregulation of p65 or PUMA expression by TGF-β1siRNA requires pERK1/2 inhibition. TGF-β1 shRNA inhibited tumor growth in vivo. CONCLUSIONS Therapies targeting the TGF-β1 pathway may be more effective to prevent primary tumor formation. The ability of this therapy to decrease tumorigenesis may be related to ERK1/2/NF-κB/PUMA signaling.
منابع مشابه
Targeting TGF-β1 inhibits invasion of anaplastic thyroid carcinoma cell through SMAD2-dependent S100A4-MMP-2/9 signalling.
OBJECTIVE Anaplastic thyroid cancer (ATC) is one of the most lethal human malignancies. However, the molecular mechanisms of ATC invasion are poorly understood. The transforming growth factor-beta (TGF-β) signaling pathway plays a critical role in promoting tumor metastasis. TGF-β1 was found to be overexpressed in anaplastic thyroid cancer (ATC). We therefore tested our hypothesis that targeted...
متن کاملGalunisertib, a TGF-β receptor (TβR)-I inhibitor, suppresses growth and invasion of an anaplastic thyroid cancer 8505C cell in vitro and in vivo
Background and objective: The transforming growth factor-beta (TGF-β) signaling pathway is known to play a critical role in promoting tumor growth and metastasis. Blocking this pathway has been found to inhibit tumor growth and metastasis. Previous study has found that siRNA targeting TGF-β1 could inhibit growth and invasion of the anaplastic thyroid cancer (ATC) cells. Galunisertib (LY2157299)...
متن کاملModulation of IKKβ/NF-κB and TGF-β1/Smad via Fuzheng Huayu recipe involves in prevention of nutritional steatohepatitis and fibrosis in mice
Objective(s):Fuzheng Huayu recipe (FZHY) exerts significant protective effects against liver fibrosis by strengthening the body’s resistance and removing blood stasis. However, the molecular mechanisms through which FZHY affects liver fibrosis are still unclear. In this study, we examined the expression levels of factors involved in the inhibitor κB kinase-β (IKK-β)/nuclear factor-κB (NF-κB) an...
متن کاملXia-yu-xue decoction (XYXD) reduces carbon tetrachloride (CCl4)-induced liver fibrosis through inhibition hepatic stellate cell activation by targeting NF-κB and TGF-β1 signaling pathways
BACKGROUND Hepatic stellate cell (HSC) activation is activated mainly by endotoxin and transforming growth factor (TGF-β1) in chronic liver injury, consequently, can be important therapeutic targets. Xia-yu-xue decoction (XYXD), a classical recipe used in China to treat liver fibrosis, and has been revealed to inhibit hepatic fibrosis in animal models, the mechanism of action of XYXD remains el...
متن کاملOroxylin A inhibits the generation of Tregs in non-small cell lung cancer
Oroxylin A (OA), a naturally occurring monoflavonoid isolated from Scutellariae radix, has previously been reported to inhibit the proliferation of several cancer cell lines. CD4+CD25+Foxp3+ regulatory T cells (Tregs) play an important role in maintenance of immunologic self-tolerance. Tregs also increase in cancer and take part in suppressing antitumor immune responses. Here, we explored how O...
متن کامل