Persistency and matroid intersection

نویسندگان

  • Dimitris Magos
  • Ioannis Mourtos
  • Leonidas S. Pitsoulis
چکیده

In this paper, we show that for any independence system, the problem of finding a persistency partition of the ground set and that of finding a maximum weight independent set are polynomially equivalent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matroid Intersection

Last lecture we covered matroid intersection, and defined matroid union. In this lecture we review the definitions of matroid intersection, and then show that the matroid intersection polytope is TDI. This is Chapter 41 in Schrijver’s book. Next we review matroid union, and show that unlike matroid intersection, the union of two matroids is again a matroid. This material is largely contained in...

متن کامل

Parallel Complexity for Matroid Intersection and Matroid Parity Problems

Let two linear matroids have the same rank in matroid intersection. A maximum linear matroid intersection (maximum linear matroid parity set) is called a basic matroid intersection (basic matroid parity set), if its size is the rank of the matroid. We present that enumerating all basic matroid intersections (basic matroid parity sets) is in NC, provided that there are polynomial bounded basic m...

متن کامل

The Complexity of Maximum Matroid-Greedoid Intersection

The maximum intersection problem for a matroid and a greedoid, given by polynomial-time oracles, is shown NP -hard by expressing the satisfiability of boolean formulas in 3-conjunctive normal form as such an intersection. Also the corresponding approximation problem is shown NP -hard for certain approximation performance bounds. This is in contrast with the maximum matroid-matroid intersection ...

متن کامل

Exact and Approximation Algorithms for Weighted Matroid Intersection

In this paper, we propose new exact and approximation algorithms for the weighted matroid intersection problem. Our exact algorithm is faster than previous algorithms when the largest weight is relatively small. Our approximation algorithm delivers a (1 − ε)-approximate solution with a running time significantly faster than most known exact algorithms. The core of our algorithms is a decomposit...

متن کامل

A Fast Approximation for Maximum Weight Matroid Intersection

We present an approximation algorithm for the maximum weight matroid intersection problem in the independence oracle model. Given two matroids defined over a common ground set N of n elements, let k be the rank of the matroid intersection and let Q denote the cost of an independence query for either matroid. An exact algorithm for finding a maximum cardinality independent set (the unweighted ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Manag. Science

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2009