Antheraea pernyi Silk Fiber: A Potential Resource for Artificially Biospinning Spider Dragline Silk
نویسندگان
چکیده
The outstanding properties of spider dragline silk are likely to be determined by a combination of the primary sequences and the secondary structure of the silk proteins. Antheraea pernyi silk has more similar sequences to spider dragline silk than the silk from its domestic counterpart, Bombyx mori. This makes it much potential as a resource for biospinning spider dragline silk. This paper further verified its possibility as the resource from the mechanical properties and the structures of the A. pernyi silks prepared by forcible reeling. It is surprising that the stress-strain curves of the A. pernyi fibers show similar sigmoidal shape to those of spider dragline silk. Under a controlled reeling speed of 95 mm/s, the breaking energy was 1.04 x 10(5) J/kg, the tensile strength was 639 MPa and the initial modulus was 9.9 GPa. It should be noted that this breaking energy of the A. pernyi silk approaches that of spider dragline silk. The tensile properties, the optical orientation and the beta-sheet structure contents of the silk fibers are remarkably increased by raising the spinning speeds up to 95 mm/s.
منابع مشابه
High-Toughness Silk Produced by a Transgenic Silkworm Expressing Spider (Araneus ventricosus) Dragline Silk Protein
Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein co...
متن کاملSynchrotron FTIR microspectroscopy of single natural silk fibers.
Synchrotron FTIR (S-FTIR) microspectroscopy was used to monitor the silk protein conformation in a range of single natural silk fibers (domestic and wild silkworm and spider dragline silk). With the selection of suitable aperture size, we obtained high-resolution S-FTIR spectra capable of semiquantitative analysis of protein secondary structures. For the first time, we have determined from S-FT...
متن کاملRecombinant Production and Determinants for Fiber Formation
Spider dragline silk is Nature’s high-performance fiber that outperforms the best man-made materials by displaying extraordinary mechanical properties. In addition, spider silk is biocompatible and biodegradable, which makes it suitable as a model for biomaterial production. Dragline silk consists of large structural proteins (spidroins) comprising an extensive region of poly-alanine/glycine-ri...
متن کاملSilk: Optical Properties over 12.6 Octaves THz-IR-Visible-UV Range
Domestic (Bombyx mori) and wild (Antheraea pernyi) silk fibers were characterised over a wide spectral range from THz 8 cm -1 ( λ = 1.25 mm, f = 0.24 THz) to deep-UV 50 × 10 3 cm - 1 ( λ = 200 nm, f = 1500 THz) wavelengths or over a 12.6 octave frequency range. Spectral features at β-sheet, α-coil and amorphous fibroin were analysed at different spectral ranges. Single fiber cross sections at m...
متن کاملSpider silk fibers spun from soluble recombinant silk produced in mammalian cells.
Spider silks are protein-based "biopolymer" filaments or threads secreted by specialized epithelial cells as concentrated soluble precursors of highly repetitive primary sequences. Spider dragline silk is a flexible, lightweight fiber of extraordinary strength and toughness comparable to that of synthetic high-performance fibers. We sought to "biomimic" the process of spider silk production by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010